亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Machine Learning-Based Ecological Impact Assessment Model for Tourism Destinations

旅游 目的地 旅游目的地 计算机科学 环境资源管理 生态学 人工智能 工程类 地理 环境规划 业务 环境科学 生物 考古
作者
Zhen Sha
出处
期刊:International Journal of High Speed Electronics and Systems [World Scientific]
被引量:1
标识
DOI:10.1142/s0129156425403663
摘要

Conservation efforts may find tourism either helpful or harmful. Protected environments felt the environmental toll of tourism’s growth and variety. A framework for environmentally responsible tourism was proposed based on real-world studies that examined the connection between growth in tourism and environmental compatibility. Global interest in the Ecological Impact Assessment (EIA) of tourist attraction issues has grown as environmental preservation has gained more and more attention. The paradigm proposed a moderating role for government support and policy interventions in preserving an ecological system while striking a balance between corporate and ecological concerns. The research population includes all parties involved in tourism, such as travelers, local government officials, hotel owners, and tour operators that operate in the region. This study aims to develop an integrated decision-making method for environmental impact assessments of tourist attractions. A model for predicting the demand for cruise tourism called IRBFNN-GSA, which is an improved radial basis function neural network with a gravitational search algorithm, and a model for predicting the effect of tourism on changes in the density of vegetation on land, called Support Vector Machine (SVM), are both suggested to improve the effectiveness of forecasts. An improved radial basis function neural networks model’s hyper-parameters are fine-tuned using GSA in the suggested variant. The results show that IRBFNN-GSA has the best predicting performance when used with certain mobile keywords and economic indices when compared with other models with different parameters. The findings show that SVMs are useful predictors for tourist demand forecasting and that the methodology’s recommended framework is successful.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
9秒前
小年小少发布了新的文献求助10
9秒前
Dr. Chen发布了新的文献求助10
12秒前
令狐冲完成签到 ,获得积分10
12秒前
Cassiel完成签到,获得积分10
15秒前
hahahan完成签到 ,获得积分10
18秒前
上官若男应助Passion采纳,获得10
28秒前
29秒前
lll完成签到 ,获得积分10
30秒前
wrry发布了新的文献求助10
34秒前
37秒前
桃桃发布了新的文献求助30
39秒前
Passion发布了新的文献求助10
41秒前
ww完成签到 ,获得积分10
48秒前
绿毛怪完成签到,获得积分10
53秒前
桃桃完成签到,获得积分10
58秒前
1分钟前
昵称已挥发发布了新的文献求助200
1分钟前
优美紫槐应助满意的世界采纳,获得100
1分钟前
1分钟前
1分钟前
Cmqq发布了新的文献求助10
1分钟前
科研通AI6应助满意的世界采纳,获得20
1分钟前
1分钟前
ding应助Cmqq采纳,获得10
1分钟前
1分钟前
1分钟前
Krim完成签到 ,获得积分0
1分钟前
Orange应助科研通管家采纳,获得10
1分钟前
丘比特应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
2分钟前
patrickli发布了新的文献求助10
2分钟前
patrickli完成签到,获得积分10
2分钟前
2分钟前
Swear完成签到 ,获得积分10
2分钟前
2分钟前
tianle完成签到,获得积分10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599747
求助须知:如何正确求助?哪些是违规求助? 4685478
关于积分的说明 14838528
捐赠科研通 4670257
什么是DOI,文献DOI怎么找? 2538191
邀请新用户注册赠送积分活动 1505527
关于科研通互助平台的介绍 1470898