材料科学
阳极
电催化剂
钌
质子交换膜燃料电池
氮化物
氧化钌
无机化学
复合数
兴奋剂
氧化物
氧化钛
化学工程
催化作用
电化学
电极
纳米技术
复合材料
光电子学
冶金
燃料电池
物理化学
化学
生物化学
图层(电子)
工程类
作者
Heng Zhang,Lili Liu,Pei Liu,Dongdong Wang,Xingdong Wang
标识
DOI:10.1002/aenm.202406074
摘要
Abstract The application of ruthenium‐based catalysts in proton‐exchange membrane water electrolyzers is impeded by lattice oxygen mechanism and the subsequent structural collapse. Herein, a design strategy for the preparation of N‐doped RuO₂ using TiN nanoparticles as the nitrogen source is presented. The in‐ situ characterization and theoretical calculation reveal the optimized oxygen evolution reaction (OER) mechanism on the resulting N‐RuO 2 /TiN catalyst. The incorporation of low‐electronegativity N and the formation of interfacial Ru−O−Ti bridge structure lead to the redistribution of electron density on adjacent Ru sites, weakening the Ru–O covalency and inhibiting the reactivity of lattice oxygen during electrocatalytic OER. Meanwhile, the altered electronic structures also optimize the adsorption energy of intermediates, consequently facilitating the formation of the pivotal intermediate *OOH and enhancing the electrocatalytic activity. The N‐RuO 2 /TiN electrocatalyst displays a extremely low OER overpotential of 159 mV at 10 mA cm −2 in 0.5 m H 2 SO 4 . Particularly, the water electrolysis single cell with N‐RuO 2 /TiN as anode electrocatalyst conveys an extremely low voltage of 1.78 V at 3A cm −2 and degradation rate of 26 µV h −1 during a 1100 h operation at 1 A cm −2 . This work also provides an excellent catalyst for industrial‐level electrolysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI