Systematic Review and Meta-Analysis of Machine Learning Models for Acute Kidney Injury Risk Classification

急性肾损伤 医学 荟萃分析 重症监护医学 计算机科学 人工智能 内科学
作者
Augusto Cama-Olivares,Chloe G. Braun,Tomonori Takeuchi,Emma O’Hagan,Kathryn A. Kaiser,Lama Ghazi,Jin Chen,Lui G. Forni,Sandra L. Kane‐Gill,Marlies Ostermann,Benjamin Shickel,Jacob Ninan,Javier A. Neyra
出处
期刊:Journal of The American Society of Nephrology
标识
DOI:10.1681/asn.0000000702
摘要

Background: Artificial Intelligence (AI) through machine learning (ML) models appears to provide accurate and precise acute kidney injury (AKI) risk classification in some clinical settings, but their performance and implementation in real-world settings has not been established. Methods: PubMed, EMBASE, Web of Science, and Scopus were searched until August 2023. Articles reporting on externally validated models for prediction of AKI onset, AKI severity, and post-AKI complications in hospitalized adult and pediatric patients were searched using text words related to AKI, AI, and ML. Two independent reviewers screened article titles, abstracts, and full texts. Areas under the receiver operating characteristic curves (AUCs) were used to compare model discrimination and pooled using a random-effects model. Results: Of the 4816 articles initially identified and screened, 95 were included representing 3.8 million admissions. The KDIGO-AKI criteria were the most frequently used to define AKI (72%). We identified 302 models, with the most common being logistic regression (37%), neural networks (10%), random forest (9%), and XGBoost (9%). The most frequently reported predictors of hospitalized incident AKI were age, sex, diabetes, serum creatinine, and hemoglobin. The pooled AUCs for AKI onset were 0.82 (95% CI, 0.80-0.84) and 0.78 (95% CI, 0.76-0.80) for internal and external validation, respectively. Pooled AUCs across multiple clinical settings, AKI severities, and post-AKI complications ranged from 0.78 to 0.87 for internal validation and 0.73 to 0.84 for external validation. Although data were limited, results in the pediatric population aligned with those observed in adults. Between-study heterogeneity was high for all outcomes (I 2 >90%), and most studies presented high-risk of bias (86%) according to the Prediction model Risk Of Bias ASsessment Tool. Conclusions: Most externally validated models performed well in predicting AKI onset, AKI severity, and post-AKI complications in hospitalized adult and pediatric populations. However, heterogeneity in clinical settings, study populations, and predictors limits their generalizability and implementation at the bedside.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白日梦我发布了新的文献求助10
1秒前
田様应助费城青年采纳,获得10
1秒前
ww完成签到 ,获得积分10
1秒前
2秒前
2秒前
2秒前
完美世界应助工藤新一采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
2秒前
3秒前
4秒前
扑通扑通通完成签到 ,获得积分10
5秒前
个性的平蓝完成签到 ,获得积分10
5秒前
6秒前
满街井盖发布了新的文献求助10
6秒前
快来和姐妹玩完成签到,获得积分10
7秒前
9秒前
慕青应助白日梦我采纳,获得10
9秒前
风息发布了新的文献求助10
9秒前
苹果巧蕊完成签到 ,获得积分10
10秒前
13秒前
义气天真发布了新的文献求助10
14秒前
14秒前
hhuajw完成签到,获得积分10
17秒前
17秒前
疯狂的羊癫疯完成签到,获得积分10
18秒前
邱小姐给邱小姐的求助进行了留言
18秒前
李友健完成签到 ,获得积分10
18秒前
echo应助刘雨欣采纳,获得10
19秒前
充电宝应助yesmola采纳,获得10
20秒前
20秒前
20秒前
feng完成签到,获得积分10
21秒前
24秒前
fury0205完成签到,获得积分10
24秒前
沉默哈密瓜完成签到 ,获得积分10
24秒前
工藤新一发布了新的文献求助10
25秒前
Never完成签到,获得积分10
25秒前
林夕完成签到 ,获得积分10
26秒前
细心碧彤完成签到,获得积分10
26秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Finite Groups: An Introduction 800
Research on WLAN scenario optimisation policy based on IoT smart campus 500
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3906027
求助须知:如何正确求助?哪些是违规求助? 3451606
关于积分的说明 10865426
捐赠科研通 3176966
什么是DOI,文献DOI怎么找? 1755185
邀请新用户注册赠送积分活动 848686
科研通“疑难数据库(出版商)”最低求助积分说明 791203