亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Systematic Review and Meta-Analysis of Machine Learning Models for Acute Kidney Injury Risk Classification

急性肾损伤 医学 荟萃分析 重症监护医学 计算机科学 人工智能 内科学
作者
Augusto Cama-Olivares,Chloe G. Braun,Tomonori Takeuchi,Emma O’Hagan,Kathryn A. Kaiser,Lama Ghazi,Jin Chen,Lui G. Forni,Sandra L. Kane‐Gill,Marlies Ostermann,Benjamin Shickel,Jacob Ninan,Javier A. Neyra
出处
期刊:Journal of The American Society of Nephrology 卷期号:36 (10): 1969-1983 被引量:6
标识
DOI:10.1681/asn.0000000702
摘要

Key Points Pooled discrimination metrics were acceptable (area under the receiver operating characteristic curve >0.70) for all AKI risk classification categories in both internal and external validation. Better performance was observed in most recently published studies and those with a low or unclear risk of bias. Significant heterogeneity in patient populations, definitions, clinical predictors, and methods limit implementation in real-world clinical scenarios. Background Artificial intelligence through machine learning models seems to provide accurate and precise AKI risk classification in some clinical settings, but their performance and implementation in real-world settings has not been established. Methods PubMed, Excerpta Medica (EMBASE) database, Web of Science, and Scopus were searched until August 2023. Articles reporting on externally validated models for prediction of AKI onset, AKI severity, and post-AKI complications in hospitalized adult and pediatric patients were searched using text words related to AKI, artificial intelligence, and machine learning. Two independent reviewers screened article titles, abstracts, and full texts. Areas under the receiver operating characteristic curves (AUCs) were used to compare model discrimination and pooled using a random-effects model. Results Of the 4816 articles initially identified and screened, 95 were included, representing 3.8 million admissions. The Kidney Disease Improving Global Outcomes (KDIGO)-AKI criteria were most frequently used to define AKI (72%). We identified 302 models, with the most common being logistic regression (37%), neural networks (10%), random forest (9%), and eXtreme gradient boosting (9%). The most frequently reported predictors of hospitalized incident AKI were age, sex, diabetes, serum creatinine, and hemoglobin. The pooled AUCs for AKI onset were 0.82 (95% confidence interval, 0.80 to 0.84) and 0.78 (95% confidence interval, 0.76 to 0.80) for internal and external validation, respectively. Pooled AUCs across multiple clinical settings, AKI severities, and post-AKI complications ranged from 0.78 to 0.87 for internal validation and 0.73 to 0.84 for external validation. Although data were limited, results in the pediatric population aligned with those observed in adults. Between-study heterogeneity was high for all outcomes (I 2 >90%), and most studies presented high risk of bias (86%) according to the Prediction Model Risk of Bias Assessment Tool. Conclusions Most externally validated models performed well in predicting AKI onset, AKI severity, and post-AKI complications in hospitalized adult and pediatric populations. However, heterogeneity in clinical settings, study populations, and predictors limits their generalizability and implementation at the bedside.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
寒泉完成签到,获得积分10
2秒前
9秒前
稚久发布了新的文献求助10
12秒前
13秒前
tlj0808发布了新的文献求助20
17秒前
pegasus0802完成签到,获得积分10
18秒前
29秒前
王钢铁发布了新的文献求助10
32秒前
piupiu完成签到,获得积分10
37秒前
选波完成签到,获得积分20
41秒前
情怀应助tlj0808采纳,获得20
46秒前
Criminology34应助科研通管家采纳,获得10
55秒前
Criminology34应助科研通管家采纳,获得10
56秒前
隐形曼青应助选波采纳,获得10
57秒前
王钢铁完成签到,获得积分10
1分钟前
侯锐淇完成签到 ,获得积分10
1分钟前
1分钟前
选波发布了新的文献求助10
1分钟前
CodeCraft应助陈坤采纳,获得10
1分钟前
1分钟前
liu发布了新的文献求助10
1分钟前
1分钟前
小破名发布了新的文献求助10
1分钟前
小不点发布了新的文献求助10
1分钟前
liu完成签到,获得积分10
2分钟前
2分钟前
思源应助小破名采纳,获得10
2分钟前
吾日三省吾身完成签到 ,获得积分10
2分钟前
2分钟前
Viiigo完成签到,获得积分10
2分钟前
tlj0808发布了新的文献求助20
2分钟前
2分钟前
陈玺丞发布了新的文献求助30
2分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
2分钟前
2分钟前
陈坤发布了新的文献求助10
3分钟前
SciGPT应助选波采纳,获得10
3分钟前
j7完成签到 ,获得积分10
3分钟前
3分钟前
思源应助tlj0808采纳,获得20
3分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644645
求助须知:如何正确求助?哪些是违规求助? 4764877
关于积分的说明 15025423
捐赠科研通 4803014
什么是DOI,文献DOI怎么找? 2567817
邀请新用户注册赠送积分活动 1525416
关于科研通互助平台的介绍 1484958