Flow field reconstruction in inlet of scramjet at Mach 10 based on physical information neural network

物理 卷积神经网络 残余物 过度拟合 人工神经网络 入口 流量(数学) 分段 算法 机械 人工智能 航空航天工程 计算机科学 数学分析 机械工程 数学 工程类
作者
Mingming Guo,Jialing Le,Xue Deng,Ye Tian,Yue Ma,Shuhong Tong,Hua Zhang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (10) 被引量:10
标识
DOI:10.1063/5.0170588
摘要

This paper proposed the physical information residual spatial pyramid pooling (PIResSpp) convolutional neural network that is highly robust and introduces a residual neural network architecture that can satisfactorily fit high-dimensional functions by using jumping connections to reduce the risk of overfitting. Key features of the flow field were extracted by using pooling kernels of different sizes and were then stitched together to fuse its local and global features. The axisymmetric inlet of the scramjet generated by the Bezier curve was established through highly precise numerical simulations, and datasets of flow fields under different geometric configurations were constructed according to the parametric design. The PIResSpp model was trained on a sample dataset, and mapping relationships were established between the parameters of incoming flow/those of the geometry of the inlet, and the velocity, pressure, and density fields in it. Finally, the results of reconstruction of the flow field at the inlet with different design parameters were tested and compared with the outcomes of various deep learning models. The results show that the average peak signal-to-noise ratio of the flow field reconstructed by the proposed model was 36.427, with a correlation coefficient higher than 97%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
星辰大海应助OvO采纳,获得10
2秒前
4秒前
揉揉发布了新的文献求助10
5秒前
6秒前
zsg发布了新的文献求助10
6秒前
阳光的涵菡发布了新的文献求助100
6秒前
读书高发布了新的文献求助10
7秒前
8秒前
沙一汀绯闻女友完成签到,获得积分10
8秒前
无语完成签到,获得积分10
8秒前
傲娇以寒完成签到,获得积分10
9秒前
科目三应助都选C采纳,获得10
9秒前
wing00024完成签到,获得积分10
10秒前
Dumbledonut发布了新的文献求助10
10秒前
bkagyin应助YJ888采纳,获得10
12秒前
12秒前
13秒前
小马甲应助zsg采纳,获得10
14秒前
w_tiger完成签到 ,获得积分10
15秒前
16秒前
DengJJJ完成签到,获得积分10
18秒前
linda完成签到,获得积分10
18秒前
谷前完成签到,获得积分10
19秒前
19秒前
ding应助Alora采纳,获得10
19秒前
20秒前
20秒前
蒙面侠发布了新的文献求助10
21秒前
21秒前
Hilda007应助英勇的凝荷采纳,获得10
21秒前
刘永红发布了新的文献求助10
21秒前
zenh发布了新的文献求助10
23秒前
seekingalone完成签到 ,获得积分10
23秒前
23秒前
都选C发布了新的文献求助10
23秒前
树袋发布了新的文献求助10
24秒前
小蘑菇应助你真是那个啊采纳,获得10
25秒前
WF发布了新的文献求助10
25秒前
Jasper应助可爱小张采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299605
求助须知:如何正确求助?哪些是违规求助? 4447759
关于积分的说明 13843607
捐赠科研通 4333397
什么是DOI,文献DOI怎么找? 2378808
邀请新用户注册赠送积分活动 1374055
关于科研通互助平台的介绍 1339586