Flow field reconstruction in inlet of scramjet at Mach 10 based on physical information neural network

物理 卷积神经网络 残余物 过度拟合 人工神经网络 入口 流量(数学) 分段 算法 机械 人工智能 航空航天工程 计算机科学 数学分析 机械工程 数学 工程类
作者
Mingming Guo,Jialing Le,Xue Deng,Ye Tian,Yue Ma,Shuhong Tong,Hua Zhang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (10) 被引量:8
标识
DOI:10.1063/5.0170588
摘要

This paper proposed the physical information residual spatial pyramid pooling (PIResSpp) convolutional neural network that is highly robust and introduces a residual neural network architecture that can satisfactorily fit high-dimensional functions by using jumping connections to reduce the risk of overfitting. Key features of the flow field were extracted by using pooling kernels of different sizes and were then stitched together to fuse its local and global features. The axisymmetric inlet of the scramjet generated by the Bezier curve was established through highly precise numerical simulations, and datasets of flow fields under different geometric configurations were constructed according to the parametric design. The PIResSpp model was trained on a sample dataset, and mapping relationships were established between the parameters of incoming flow/those of the geometry of the inlet, and the velocity, pressure, and density fields in it. Finally, the results of reconstruction of the flow field at the inlet with different design parameters were tested and compared with the outcomes of various deep learning models. The results show that the average peak signal-to-noise ratio of the flow field reconstructed by the proposed model was 36.427, with a correlation coefficient higher than 97%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
英俊白玉发布了新的文献求助10
2秒前
Erich完成签到 ,获得积分10
5秒前
6秒前
6秒前
7秒前
Ava应助清新的音响采纳,获得10
9秒前
Lucas应助科研通管家采纳,获得10
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
所所应助科研通管家采纳,获得10
9秒前
烟花应助科研通管家采纳,获得10
9秒前
李健应助Megyer采纳,获得10
9秒前
顾矜应助科研通管家采纳,获得10
9秒前
大模型应助科研通管家采纳,获得10
9秒前
李爱国应助科研通管家采纳,获得10
9秒前
酷波er应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
10秒前
汉堡包应助科研通管家采纳,获得10
10秒前
在水一方应助科研通管家采纳,获得10
10秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
李爱国应助科研通管家采纳,获得10
10秒前
10秒前
annnnnn发布了新的文献求助10
11秒前
11秒前
zzz完成签到,获得积分10
12秒前
早晚发布了新的文献求助10
13秒前
13秒前
干净涵梅发布了新的文献求助10
14秒前
英俊白玉完成签到,获得积分10
14秒前
14秒前
15秒前
17秒前
fxfcpu发布了新的文献求助10
17秒前
nenoaowu发布了新的文献求助10
19秒前
20秒前
Benzhdw发布了新的文献求助30
20秒前
21秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
基于CZT探测器的128通道能量时间前端读出ASIC设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777336
求助须知:如何正确求助?哪些是违规求助? 3322714
关于积分的说明 10211156
捐赠科研通 3038009
什么是DOI,文献DOI怎么找? 1667051
邀请新用户注册赠送积分活动 797952
科研通“疑难数据库(出版商)”最低求助积分说明 758098