Graph gating-mixer for sequential recommendation

计算机科学 嵌入 标识符 图形 推荐系统 理论计算机科学 人工智能 情报检索 程序设计语言
作者
Bin Wu,Xun Su,Jing Liang,Zhongchuan Sun,Lihong Zhong,Yangdong Ye
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 122060-122060
标识
DOI:10.1016/j.eswa.2023.122060
摘要

Recent Transformer-based architectures have achieved encouraging performance for sequential recommendation, whereas their computational complexity is quadratic to the sequence length. MLP4Rec is a promising solution to settle this issue, which captures item transition patterns by a MLP-Mixer layer. Despite effectiveness, we argue that it still faces two critical limitations. On the one hand, it employs the one-hot ID technique to generate each user/item embedding, which has no specific semantics apart from being an identifier. In this case, given these ID embeddings as the original input of a MLP-Mixer layer, it is non-trivial to distill the useful information for other layers. On the other hand, it fails to explicitly differentiate the significance of different factors of an item, which is unrealistic to capture the user’s true taste in a short context; meanwhile, it also does not discriminate the importance of each item instance given the recent actions of a user. To overcome such two limitations, we propose a new solution for sequential recommendation, namely a graph Gating-Mixer Recommender (GMRec). Our solution decomposes the sequential recommendation workflow into three steps. First, by means of graph neural networks, we embed a linear graph propagation module to produce high-quality user and item embeddings. Afterwards, we replace the MLP-Mixer layer in MLP4Rec with a devised dual gating block, which could dynamically control what features and which items can be passed to the downstream layers. Lastly, we devise a user-specific gating strategy to adaptively integrate two components in GMRec. Extensive experiments are performed on the Beauty, Cellphone, Gowalla, and ML-10M datasets, demonstrating the rationality and effectiveness of our solution. Specifically, when Precision@10, Recall@10, MAP@10, and NDCG@10 are adopted as evaluation metrics, the performance gains of GMRec over recent state-of-the-art methods on four datasets are 11.91%, 19.46%, 9.56%, and 13.01%, respectively. Our implemented codes and datatsets are available via https://github.com/wubinzzu/GMRec.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助飞飞采纳,获得10
1秒前
3秒前
李健应助Moses采纳,获得10
4秒前
李健应助未来采纳,获得10
4秒前
kckc发布了新的文献求助10
8秒前
析渊完成签到,获得积分10
9秒前
给我一篇文献吧完成签到 ,获得积分10
10秒前
希望天下0贩的0应助你好采纳,获得10
11秒前
复杂的兔子完成签到,获得积分10
12秒前
15秒前
吼吼吼完成签到,获得积分20
15秒前
17秒前
19秒前
Pureasy完成签到,获得积分10
21秒前
21秒前
量子星尘发布了新的文献求助50
22秒前
东123发布了新的文献求助10
22秒前
微昆界发布了新的文献求助10
22秒前
Jun完成签到,获得积分10
22秒前
蓝天黄土完成签到,获得积分10
23秒前
24秒前
26秒前
changping完成签到,获得积分10
27秒前
ty发布了新的文献求助10
27秒前
aaa完成签到,获得积分10
28秒前
zzyfdc完成签到,获得积分10
28秒前
不解释完成签到,获得积分10
28秒前
柴柴发布了新的文献求助10
28秒前
sdd完成签到,获得积分10
29秒前
你好发布了新的文献求助10
31秒前
行道吉安完成签到,获得积分10
31秒前
消月明完成签到 ,获得积分10
32秒前
东123完成签到,获得积分10
33秒前
Miya完成签到 ,获得积分10
34秒前
呆熊发布了新的文献求助10
38秒前
jill完成签到,获得积分10
38秒前
小蘑菇应助科研通管家采纳,获得10
40秒前
CodeCraft应助科研通管家采纳,获得10
40秒前
浮游应助科研通管家采纳,获得10
40秒前
爆米花应助科研通管家采纳,获得30
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4959361
求助须知:如何正确求助?哪些是违规求助? 4220151
关于积分的说明 13140634
捐赠科研通 4003695
什么是DOI,文献DOI怎么找? 2190931
邀请新用户注册赠送积分活动 1205508
关于科研通互助平台的介绍 1116851