Development of a three-term MPC and its application to an ultra-supercritical coal fired power plant

期限(时间) 控制理论(社会学) 模型预测控制 超临界流体 规范(哲学) 数学 计算机科学 控制(管理) 化学 政治学 量子力学 物理 人工智能 有机化学 法学
作者
Yun Zhu,Kangkang Zhang,Yucai Zhu,Pengfei Jiang,Jinming Zhou
出处
期刊:Control Engineering Practice [Elsevier BV]
卷期号:143: 105787-105787 被引量:1
标识
DOI:10.1016/j.conengprac.2023.105787
摘要

Most MPC (Model Predictive Control) algorithms used in industries and studied in the control academia use a two-term QP (quadratic programming), where the first term is the weighted norm of the output errors, and the second term is that of the input increments. In this work, a DMC (Dynamic Matrix Control) algorithm that uses three-term QP is developed and studied, where the third term is the weighted norm of the output increments. A relationship between the three-term DMC and the two-term DMC is established; and based on that, ideal closed-loop response curves are derived. These results are useful for the tuning of the three-term DMC. Then, a method for comparing two control methods is proposed and it is shown that the three-term DMC outperforms the two-term DMC. The findings are verified using simulation studies. Finally, the three-term DMC is successfully applied to a 1030 MW ultra-supercritical coal-fired power plant. According to simulation study using the identified model, in comparison to traditional two-term DMC, there is a roughly 10% reduction in the standard deviation of load tracking error for similar control efforts. In real-life tests on the power plant, the performance of the three-term DMC is compared to that of the existing PID controller. The load rate of change increased from 0.8%/min to 1.5%/min while the standard deviation of steam pressure decreased 38%; the standard deviations of the main steam temperature and reheat steam temperature decreased more than 40% with their mean values increased by more than 2 ∘C and 4 ∘C respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助年轻小之采纳,获得10
1秒前
攘攘发布了新的文献求助10
1秒前
YUE发布了新的文献求助50
2秒前
2秒前
2秒前
皓月繁星发布了新的文献求助30
3秒前
果果糖YLJ发布了新的文献求助10
3秒前
3秒前
jiayi完成签到,获得积分20
4秒前
4秒前
小余同学发布了新的文献求助10
4秒前
spark发布了新的文献求助30
5秒前
5秒前
6秒前
6秒前
6秒前
幽篁深韵发布了新的文献求助10
7秒前
summer发布了新的文献求助10
7秒前
8秒前
伊弦完成签到,获得积分10
8秒前
8秒前
科研通AI6应助研究牲采纳,获得10
9秒前
辞镜发布了新的文献求助10
10秒前
12秒前
lalala应助ss采纳,获得10
12秒前
李健应助dddjs采纳,获得10
12秒前
12秒前
13秒前
13秒前
14秒前
hj1234完成签到,获得积分10
15秒前
年轻小之发布了新的文献求助10
15秒前
酷波er应助科研小白采纳,获得10
16秒前
16秒前
Hello应助mm采纳,获得10
16秒前
果果糖YLJ完成签到,获得积分10
17秒前
重要衬衫发布了新的文献求助10
17秒前
18秒前
18秒前
赘婿应助幸福的诗兰采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5287058
求助须知:如何正确求助?哪些是违规求助? 4439572
关于积分的说明 13822123
捐赠科研通 4321561
什么是DOI,文献DOI怎么找? 2372031
邀请新用户注册赠送积分活动 1367525
关于科研通互助平台的介绍 1331007