A Novel Fuzzy Large Margin Distribution Machine with Unified Pinball Loss

铰链损耗 计算机科学 人工智能 噪音(视频) 算法 机器学习 支持向量机 分类器(UML) 模式识别(心理学) 图像(数学)
作者
Libo Zhang,Denghao Dong,Lianyi Luo,Dun Liu
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tfuzz.2023.3333571
摘要

On the basis of the support vector machine (SVM), Large Margin Distribution Machine (LDM) improves the generalization performance by incorporating the marginal distribution theory. Nevertheless, the current LDM models (LDMs) still exhibit limitations when it comes to handling noisy data, such as: i) LDMs fails to effectively discern the samples being noise and consequently falls short in robust defenses. ii) The hinge loss of LDMs is predicated upon the minimal inter-category separation, rendering the corresponding classifier highly susceptible to perturbations induced by noise. To address these limitations, we leverage the fuzzy set theory and pinball loss function, and propose a novel Fuzzy Large Margin Distribution Machine with Unified Pinball Loss (FUPLDM), which is performed as: i) An innovative fuzzy membership function is developed, utilizing two distinct types of feature centers and their associations with the samples. The function assigns a probability to each sample, indicating the likelihood of it being classified as noise. As a result, the model gains the remarkable ability to accurately identify and distinguish noise from other data. ii) Replace the hinge loss function with the unified pinball loss. The pinball loss function is based on interquartile distance, which is less affected by noise and can well improve the noise immunity of the classifier at the boundary. Therefore, FUPLDM has superior noise recognition capabilities and substantial noise resistance against its detrimental effects. Furthermore, We also analyzed the properties of FUPLDM, including noise insensitivity, intra-class distance, inter-class scatter, and misclassification error. At last, we conduct a series of comparative experiments on artificial synthetic datasets, UCI benchmark datasets, and noise-added UCI datasets, which demonstrate the effectiveness and superiority of FUPLDM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
九月完成签到,获得积分10
2秒前
heart完成签到,获得积分10
3秒前
li发布了新的文献求助10
5秒前
12秒前
12秒前
昵称发布了新的文献求助10
13秒前
meng完成签到,获得积分10
14秒前
HongqiZhang发布了新的文献求助10
14秒前
Owen应助儒雅凡桃采纳,获得10
14秒前
15秒前
今今发布了新的文献求助10
19秒前
DrY发布了新的文献求助10
19秒前
21秒前
安安发布了新的文献求助20
22秒前
23秒前
彭于晏应助baiyujing采纳,获得10
24秒前
zzz完成签到 ,获得积分10
25秒前
26秒前
害羞万天发布了新的文献求助10
26秒前
善良的疯丫头完成签到,获得积分10
27秒前
28秒前
baiyujing完成签到,获得积分10
29秒前
mmmm完成签到,获得积分10
30秒前
32秒前
rony发布了新的文献求助10
34秒前
35秒前
倔驴发布了新的文献求助10
36秒前
iNk应助科研通管家采纳,获得10
36秒前
glj应助科研通管家采纳,获得10
36秒前
李爱国应助科研通管家采纳,获得10
36秒前
天天快乐应助科研通管家采纳,获得10
36秒前
iNk应助科研通管家采纳,获得20
36秒前
华仔应助iuun采纳,获得10
36秒前
张张发布了新的文献求助10
36秒前
大力元霜完成签到,获得积分10
37秒前
38秒前
弎夜完成签到,获得积分10
40秒前
害羞万天完成签到,获得积分10
40秒前
baiyujing发布了新的文献求助10
41秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801430
求助须知:如何正确求助?哪些是违规求助? 3347140
关于积分的说明 10332038
捐赠科研通 3063426
什么是DOI,文献DOI怎么找? 1681673
邀请新用户注册赠送积分活动 807650
科研通“疑难数据库(出版商)”最低求助积分说明 763843