亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel grey prediction model based on tensor higher-order singular value decomposition and its application in short-term traffic flow

随机性 计算机科学 奇异值分解 流量(计算机网络) 张量(固有定义) 数据挖掘 流量(数学) 算法 数学优化 数学 统计 几何学 计算机安全
作者
Dan Xie,Sihao Chen,Duan Hui,Xinwei Li,Congnan Luo,Yuxuan Ji,Huiming Duan
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:126: 107068-107068 被引量:1
标识
DOI:10.1016/j.engappai.2023.107068
摘要

Short-term traffic flow prediction is the key to traffic guidance and control and can directly affect the performance of intelligent transportation systems. Traffic flow data has the characteristics of volatility, chaos, and randomness, which affect the accuracy of the prediction model. Based on the multi-dimensional spatio-temporal data characteristics of traffic flow data, this paper combines the tensor higher-order singular value decomposition theory and the modeling mechanism of the classical grey model GM(1,1) model and establishes the grey GM(1,1) model with tensor higher-order singular values. The tensor higher-order singular value decomposition reflects the periodic, multi-modal, and holistic nature of traffic flow data, which can mitigate the volatility and randomness of traffic flow data and improve the accuracy of the model. Then, the new model is applied to highway short-time traffic flow prediction, analyzing the spatio-temporal nature of traffic flow data, giving the detailed steps of model modeling, and analyzing the correlation between the original traffic flow data and tensor approximation data using grey correlation degrees. There are three cases to illustrate the effectiveness of the model. Case 1 shows that the results of MAPE from nine modeling objects are stable at about 5%, which indicates that the new model has some stability; Case 2 shows that the new model is more adaptable to short-time traffic flow prediction based on the results of three different modeling and prediction objects; Case 3 uses the new model to compare it with two traditional grey forecasting models and two optimization models, and the results indicate that the new model has a total MAPE value of 5.172%, which is better than the other four grey forecasting models. Finally, the new model is applied to short-time traffic flow prediction, and its prediction results are consistent with the trend of the original traffic flow data, indicating that it can reveal the real-time characteristics of the traffic system to a certain extent and provide a reliable theoretical basis for traffic planning, control, and optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
科研通AI2S应助Lee采纳,获得10
23秒前
赘婿应助科研通管家采纳,获得10
24秒前
24秒前
赘婿应助柔弱平蝶采纳,获得10
40秒前
阔达静曼完成签到 ,获得积分10
48秒前
谦让蘑菇完成签到 ,获得积分10
51秒前
53秒前
柔弱平蝶发布了新的文献求助10
56秒前
Estelle发布了新的文献求助30
59秒前
搜集达人应助Rolo采纳,获得10
1分钟前
深情安青应助柔弱平蝶采纳,获得10
1分钟前
1分钟前
香蕉觅云应助重要纸飞机采纳,获得30
1分钟前
1分钟前
Rolo发布了新的文献求助10
1分钟前
Rolo完成签到,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
柔弱平蝶发布了新的文献求助10
2分钟前
orixero应助科研通管家采纳,获得10
2分钟前
cacaldon发布了新的文献求助10
2分钟前
2分钟前
cacaldon完成签到,获得积分10
2分钟前
zzgpku完成签到,获得积分0
3分钟前
3分钟前
3分钟前
67完成签到 ,获得积分10
4分钟前
F7erxl完成签到,获得积分10
4分钟前
SYLH应助Lei-sir采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
冉亦完成签到,获得积分10
4分钟前
caca完成签到,获得积分0
4分钟前
小芭乐完成签到 ,获得积分10
4分钟前
4分钟前
5分钟前
Yan发布了新的文献求助10
5分钟前
5分钟前
turbohuan发布了新的文献求助10
5分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845519
求助须知:如何正确求助?哪些是违规求助? 3387795
关于积分的说明 10550589
捐赠科研通 3108429
什么是DOI,文献DOI怎么找? 1712776
邀请新用户注册赠送积分活动 824501
科研通“疑难数据库(出版商)”最低求助积分说明 774877