Modeling China's terrestrial ecosystem gross primary productivity with BEPS model: Parameter sensitivity analysis and model calibration

环境科学 初级生产 生态系统 北方生态系统 陆地生态系统 大气科学 碳循环 碳汇 生态系统呼吸 生态学 生物 地质学
作者
Xiuli Xing,Mousong Wu,Wenxin Zhang,Weimin Ju,Torbern Tagesson,Wei He,Songhan Wang,Jun Wang,Hu Lu,Shu Yuan,Tingting Zhu,Xiaorong Wang,Youhua Ran,Sien Li,Chunyu Wang,Fei Jiang
出处
期刊:Agricultural and Forest Meteorology [Elsevier BV]
卷期号:343: 109789-109789 被引量:15
标识
DOI:10.1016/j.agrformet.2023.109789
摘要

Terrestrial ecosystems are the largest sink for carbon, and their ecosystem gross primary productivity (GPP) regulates variations in atmospheric carbon dioxide (CO2) concentrations. Current process-based ecosystem models used for estimating GPP are subject to large uncertainties due to poorly constrained parameter values. In this study, we implemented a global sensitivity analysis (GSA) on parameters in the Boreal Ecosystem Productivity Simulator (BEPS) considering the parameters’ second-order impacts. We also applied the generalized likelihood estimation (GLUE) method, which is flexible for a multi-parameter calibration, to optimize the GPP simulation by BEPS for 10 sites covering 7 plant functional types (PFT) over China. Our optimized results significantly reduced the uncertainty of the simulated GPP over all the sites by 17 % to 82 % and showed that the GPP is sensitive to not only the photosynthesis-related parameters but also the parameters related to the soil water uptake as well as to the energy balance. The optimized GPP across South China showed that the mix forest, shrub, and grass have a higher GPP and are more controlled by the soil water availability. This study showed that the GLUE method together with the GSA scheme could constrain the ecosystem model well when simulating GPP across multiple ecosystems and provide a reasonable estimate of the spatial and temporal distribution of the ecosystem GPP over China. We call for more observations from more sites, as well as data on plant traits, to be collected in China in order to better constrain ecosystem carbon cycle modeling and understand its response to climate change.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助活泼的傲易采纳,获得10
2秒前
2秒前
神勇雨双完成签到,获得积分10
2秒前
lykxc发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
dap发布了新的文献求助10
3秒前
SciGPT应助Joyce采纳,获得30
4秒前
4秒前
4秒前
5秒前
An2ni0完成签到,获得积分10
5秒前
coc完成签到 ,获得积分10
6秒前
坚强盾山完成签到,获得积分10
6秒前
6秒前
苏苏发布了新的文献求助10
7秒前
标致的初之完成签到,获得积分10
8秒前
Mr完成签到,获得积分10
9秒前
随便啦发布了新的文献求助10
9秒前
旷野发布了新的文献求助10
9秒前
10秒前
活泼的傲易完成签到,获得积分10
10秒前
NexusExplorer应助科研小趴菜采纳,获得30
10秒前
Mito2009完成签到,获得积分10
10秒前
科研通AI2S应助浪迹天涯采纳,获得10
11秒前
博修发布了新的文献求助30
12秒前
量子星尘发布了新的文献求助10
12秒前
张涛发布了新的文献求助10
12秒前
13秒前
搜集达人应助不晚采纳,获得10
14秒前
小鹿5460发布了新的文献求助30
14秒前
15秒前
15秒前
17秒前
JrPaleo101发布了新的文献求助200
18秒前
斯文败类应助博修采纳,获得10
18秒前
64658应助cc2713206采纳,获得10
19秒前
大城小爱发布了新的文献求助10
19秒前
爆米花应助随便啦采纳,获得10
20秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
物理流体力学(第三版)西安交通大学出版社 500
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4259070
求助须知:如何正确求助?哪些是违规求助? 3791949
关于积分的说明 11894479
捐赠科研通 3439907
什么是DOI,文献DOI怎么找? 1887895
邀请新用户注册赠送积分活动 938681
科研通“疑难数据库(出版商)”最低求助积分说明 844148