Efficient GPU Resource Management under Latency and Power Constraints for Deep Learning Inference

计算机科学 服务器 延迟(音频) 推论 吞吐量 试验台 分布式计算 深度学习 实时计算 计算机工程 计算机网络 人工智能 操作系统 电信 无线
作者
Di Liu,Zimo Ma,Aolin Zhang,Kuangyu Zheng
标识
DOI:10.1109/mass58611.2023.00074
摘要

Recent rapid development in deep learning (DL) applications generates harsh requirements for DL inference services provided by GPU servers. On one hand, a high volume of different DL workloads always demands better processing throughput. On the other hand, GPU servers need to meet both the constraints of latency and power: each inference request must be responded in real-time with strict latency requirements; GPU servers need to be operated within a fixed power cap to prevent system failures from power overloading or overheating. Therefore, how to efficiently manage GPU resources to achieve better throughput under both latency and power constraints has become a key challenge.To address this issue, we first perform comprehensive measurements of inference tasks and have studied the impact of several critical knobs, including batch size, frequency, and GPU spatial sharing, on system performance in throughput, latency, and power. Then, we propose Morak, a multi-knob resource management framework for DL inference under the constraints of latency and power. A key mechanism of Morak is GPU resource partitioning with efficient space multiplexing for DL models. To further improve throughput, Morak efficiently explores the search space of GPU frequency and batch size under the constraints. Experiment results on a hardware testbed show that Morak can achieve as much as 67.7% throughput improvement compared with several state-of-the-art baselines under tight constraints of latency and power.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
莫三颜发布了新的文献求助10
2秒前
麻师长完成签到,获得积分10
2秒前
zzz完成签到,获得积分10
3秒前
3秒前
时倾发布了新的文献求助10
4秒前
领导范儿应助华莉变身采纳,获得10
4秒前
彭佳丽发布了新的文献求助10
4秒前
科目三应助Chenchuanpeng采纳,获得10
4秒前
liuhai发布了新的文献求助10
4秒前
YuguangWu完成签到,获得积分20
5秒前
5秒前
大个应助赵宇宙采纳,获得10
6秒前
6秒前
斯文败类应助qls123采纳,获得10
6秒前
可爱的函函应助qls123采纳,获得10
6秒前
天天快乐应助qls123采纳,获得10
6秒前
李爱国应助qls123采纳,获得10
6秒前
充电宝应助qls123采纳,获得10
6秒前
Ava应助qls123采纳,获得10
6秒前
酷波er应助qls123采纳,获得10
6秒前
研友_LJaXX8发布了新的文献求助10
6秒前
英姑应助qls123采纳,获得10
6秒前
changping应助qls123采纳,获得10
6秒前
科研通AI2S应助qls123采纳,获得10
6秒前
4Peace完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
chenqiumu应助科研通管家采纳,获得20
8秒前
8秒前
小杭76应助科研通管家采纳,获得10
8秒前
尉迟希望应助科研通管家采纳,获得10
8秒前
wy.he应助科研通管家采纳,获得10
8秒前
8秒前
干饭虫应助科研通管家采纳,获得10
8秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5286347
求助须知:如何正确求助?哪些是违规求助? 4439154
关于积分的说明 13820291
捐赠科研通 4320921
什么是DOI,文献DOI怎么找? 2371639
邀请新用户注册赠送积分活动 1367266
关于科研通互助平台的介绍 1330704