YOLO-Drone: An Optimized YOLOv8 Network for Tiny UAV Object Detection

无人机 计算机科学 目标检测 人工智能 特征提取 特征(语言学) 骨干网 精确性和召回率 计算机视觉 模式识别(心理学) 实时计算 计算机网络 语言学 哲学 遗传学 生物
作者
Xianxu Zhai,Huang Zhi-hua,Tao Li,Hanzheng Liu,Siyuan Wang
出处
期刊:Electronics [Multidisciplinary Digital Publishing Institute]
卷期号:12 (17): 3664-3664 被引量:31
标识
DOI:10.3390/electronics12173664
摘要

With the widespread use of UAVs in commercial and industrial applications, UAV detection is receiving increasing attention in areas such as public safety. As a result, object detection techniques for UAVs are also developing rapidly. However, the small size of drones, complex airspace backgrounds, and changing light conditions still pose significant challenges for research in this area. Based on the above problems, this paper proposes a tiny UAV detection method based on the optimized YOLOv8. First, in the detection head component, a high-resolution detection head is added to improve the device’s detection capability for small targets, while the large target detection head and redundant network layers are cut off to effectively reduce the number of network parameters and improve the detection speed of UAV; second, in the feature extraction stage, SPD-Conv is used to extract multi-scale features instead of Conv to reduce the loss of fine-grained information and enhance the model’s feature extraction capability for small targets. Finally, the GAM attention mechanism is introduced in the neck to enhance the model’s fusion of target features and improve the model’s overall performance in detecting UAVs. Relative to the baseline model, our method improves performance by 11.9%, 15.2%, and 9% in terms of P (precision), R (recall), and mAP (mean average precision), respectively. Meanwhile, it reduces the number of parameters and model size by 59.9% and 57.9%, respectively. In addition, our method demonstrates clear advantages in comparison experiments and self-built dataset experiments and is more suitable for engineering deployment and the practical applications of UAV object detection systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
hahahalha完成签到,获得积分10
3秒前
淡定汉堡完成签到,获得积分10
3秒前
李扬完成签到,获得积分10
3秒前
烟花应助复杂的乐驹采纳,获得10
4秒前
123keyan完成签到,获得积分10
4秒前
司徒梨愁完成签到,获得积分10
5秒前
恩恩发布了新的文献求助10
5秒前
打打应助木冉采纳,获得10
5秒前
XUAN发布了新的文献求助10
8秒前
司徒梨愁发布了新的文献求助10
8秒前
ilzhuzhu完成签到,获得积分10
9秒前
9秒前
我来找文献完成签到,获得积分10
9秒前
10秒前
李爱国应助mm采纳,获得10
10秒前
哈哈哈发布了新的文献求助10
11秒前
11秒前
M3L2完成签到,获得积分10
11秒前
sxy应助dzx采纳,获得10
11秒前
喜多米430完成签到,获得积分10
12秒前
粉色娇嫩完成签到,获得积分10
14秒前
淡淡涫发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
15秒前
yangyj发布了新的文献求助10
15秒前
Siqi发布了新的文献求助10
16秒前
16秒前
科目三应助阳光采纳,获得10
18秒前
愉快的真应助PageWan采纳,获得30
18秒前
19秒前
7ohnny完成签到,获得积分10
19秒前
19秒前
fin完成签到,获得积分10
20秒前
NIUBEN发布了新的文献求助10
20秒前
苗子完成签到,获得积分10
20秒前
酷炫翠桃完成签到,获得积分10
21秒前
芝麻酱完成签到,获得积分10
22秒前
高分求助中
传播真理奋斗不息——中共中央编译局成立50周年纪念文集 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
中共中央编译局成立四十周年纪念册 / 中共中央编译局建局四十周年纪念册 950
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3876491
求助须知:如何正确求助?哪些是违规求助? 3419060
关于积分的说明 10711994
捐赠科研通 3143759
什么是DOI,文献DOI怎么找? 1734578
邀请新用户注册赠送积分活动 836852
科研通“疑难数据库(出版商)”最低求助积分说明 782835