Automatic selection of IMFs to denoise the sEMG signals using EMD

希尔伯特-黄变换 模式识别(心理学) 人工智能 样本熵 降噪 计算机科学 信号(编程语言) 均方误差 熵(时间箭头) 噪音(视频) 语音识别 数学 计算机视觉 滤波器(信号处理) 统计 物理 量子力学 图像(数学) 程序设计语言
作者
Pratap Kumar Koppolu,Krishnan Chemmangat
出处
期刊:Journal of Electromyography and Kinesiology [Elsevier BV]
卷期号:73: 102834-102834 被引量:18
标识
DOI:10.1016/j.jelekin.2023.102834
摘要

Surface Electromyography (sEMG) signals are muscle activation signals, which has applications in muscle diagnosis, rehabilitation, prosthetics, and speech etc. However, they are known to be affected by noises such as Power Line Interference (PLI), motion artifacts etc. Currently, Empirical Mode Decomposition (EMD) and its modifications such as Ensemble EMD (EEMD), and Complementary EEMD (CEEMD) are used to decompose EMG into a series of Intrinsic Mode Functions (IMFs). The denoised EMG can be obtained from the selected IMFs. Statistical methods are used to select the signal dominant IMFs to reconstruct the denoised signal. In this work, a novel procedure is proposed to automatically separate noisy IMFs from the original sEMG signal. For this purpose, Permutation Entropy (PE) is employed in EEMD sifting process called Partly EEMD (PEEMD), to separate the noisy IMFs from the original sEMG signal according to the preset PE threshold. PEEMD decomposes the original signal into various modes according to a preset PE threshold and the denoised signal is reconstructed from resultant IMFs. The PEEMD denoising procedure is applied on the experimental sEMG data collected from eight subjects, that include six various upper limb movement classes. The proposed denoising procedure achieved an improved denoising performance in comparison with EMD, EEMD, and CEEMD. An alternate measure called Sample Entropy (SE) is also used in place of PE, for the automated sifting process as a comparison. Signal to Noise Ratio (SNR), Root Mean Square Error (RMSE), and Reconstruction Error (RE) parameters are used to evaluate the denoising performance. The results, averaged across eight subjects, demonstrate that the proposed denoising procedure outperforms the state-of-the-art EMD techniques in terms of these performance measures on the experimentally collected sEMG data samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
daisy发布了新的文献求助10
刚刚
BYXGZ完成签到,获得积分10
刚刚
厚德载物完成签到 ,获得积分10
1秒前
lipanpan发布了新的文献求助10
2秒前
所所应助qsdxasc采纳,获得10
2秒前
谦让的含玉完成签到 ,获得积分10
2秒前
2秒前
lzy发布了新的文献求助10
2秒前
没心情Q完成签到,获得积分10
2秒前
闪闪幻枫完成签到,获得积分10
2秒前
称心的语梦完成签到,获得积分10
3秒前
4秒前
JamesPei应助张钧凯采纳,获得10
5秒前
LuZhaoYang完成签到,获得积分10
6秒前
7秒前
downbad发布了新的文献求助10
7秒前
lxy发布了新的文献求助10
7秒前
嘿嘿嘿侦探社完成签到,获得积分10
9秒前
10秒前
jiaojiao发布了新的文献求助10
11秒前
糖糖完成签到,获得积分10
11秒前
大气的草莓完成签到,获得积分10
11秒前
浅色凉生完成签到,获得积分20
11秒前
漂亮访风完成签到 ,获得积分10
12秒前
13秒前
波特卡斯D艾斯完成签到 ,获得积分10
14秒前
14秒前
han完成签到,获得积分10
15秒前
16秒前
张钧凯发布了新的文献求助10
16秒前
刘一一完成签到,获得积分10
17秒前
17秒前
asdfghj发布了新的文献求助10
17秒前
Una完成签到,获得积分10
17秒前
沐易完成签到,获得积分10
19秒前
19秒前
王皮皮完成签到 ,获得积分10
19秒前
123456发布了新的文献求助10
20秒前
英姑应助小椰_1733采纳,获得10
21秒前
21秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5339501
求助须知:如何正确求助?哪些是违规求助? 4476261
关于积分的说明 13931093
捐赠科研通 4371789
什么是DOI,文献DOI怎么找? 2402106
邀请新用户注册赠送积分活动 1395024
关于科研通互助平台的介绍 1366998