Combining the dynamic model and deep neural networks to identify the intensity of interventions during COVID-19 pandemic

检疫 大流行 计算机科学 人工智能 心理干预 人工神经网络 深度学习 接触追踪 传输(电信) 分离(微生物学) 干预(咨询) 2019年冠状病毒病(COVID-19) 机器学习 地理 医学 电信 生物 生态学 传染病(医学专业) 疾病 生物信息学 精神科 病理
作者
Mengqi He,Sanyi Tang,Yanni Xiao
出处
期刊:PLOS Computational Biology [Public Library of Science]
卷期号:19 (10): e1011535-e1011535 被引量:12
标识
DOI:10.1371/journal.pcbi.1011535
摘要

During the COVID-19 pandemic, control measures, especially massive contact tracing following prompt quarantine and isolation, play an important role in mitigating the disease spread, and quantifying the dynamic contact rate and quarantine rate and estimate their impacts remain challenging. To precisely quantify the intensity of interventions, we develop the mechanism of physics-informed neural network (PINN) to propose the extended transmission-dynamics-informed neural network (TDINN) algorithm by combining scattered observational data with deep learning and epidemic models. The TDINN algorithm can not only avoid assuming the specific rate functions in advance but also make neural networks follow the rules of epidemic systems in the process of learning. We show that the proposed algorithm can fit the multi-source epidemic data in Xi'an, Guangzhou and Yangzhou cities well, and moreover reconstruct the epidemic development trend in Hainan and Xinjiang with incomplete reported data. We inferred the temporal evolution patterns of contact/quarantine rates, selected the best combination from the family of functions to accurately simulate the contact/quarantine time series learned by TDINN algorithm, and consequently reconstructed the epidemic process. The selected rate functions based on the time series inferred by deep learning have epidemiologically reasonable meanings. In addition, the proposed TDINN algorithm has also been verified by COVID-19 epidemic data with multiple waves in Liaoning province and shows good performance. We find the significant fluctuations in estimated contact/quarantine rates, and a feedback loop between the strengthening/relaxation of intervention strategies and the recurrence of the outbreaks. Moreover, the findings show that there is diversity in the shape of the temporal evolution curves of the inferred contact/quarantine rates in the considered regions, which indicates variation in the intensity of control strategies adopted in various regions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SYLH应助高高的钢铁侠采纳,获得10
2秒前
2秒前
3秒前
4秒前
Johnson发布了新的文献求助10
5秒前
无心的访枫关注了科研通微信公众号
5秒前
烟花应助英勇的面包采纳,获得10
7秒前
Wendy完成签到,获得积分10
7秒前
7秒前
香蕉初瑶发布了新的文献求助10
8秒前
桐桐应助大气早晨采纳,获得10
9秒前
9秒前
于于于发布了新的文献求助10
10秒前
10秒前
11秒前
12秒前
田俊发布了新的文献求助10
12秒前
幻昼556完成签到 ,获得积分10
13秒前
少华完成签到,获得积分10
13秒前
KD完成签到,获得积分10
13秒前
科研小哥完成签到,获得积分20
14秒前
针不戳发布了新的文献求助30
15秒前
左一酱完成签到 ,获得积分10
16秒前
BioGO发布了新的文献求助10
16秒前
KD发布了新的文献求助10
16秒前
17秒前
俭朴朝雪发布了新的文献求助10
18秒前
18秒前
汉堡包应助Latono采纳,获得10
20秒前
香蕉觅云应助无情胡萝卜采纳,获得10
21秒前
正直的广缘完成签到 ,获得积分10
21秒前
852应助香蕉初瑶采纳,获得10
22秒前
22秒前
24秒前
orixero应助kk星采纳,获得10
24秒前
大胆的忆安完成签到 ,获得积分10
25秒前
JamesPei应助羲和之梦采纳,获得10
26秒前
西门子云完成签到,获得积分10
27秒前
Orange应助活力夜白采纳,获得10
27秒前
斯文败类应助日四又采纳,获得10
27秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816810
求助须知:如何正确求助?哪些是违规求助? 3360247
关于积分的说明 10407179
捐赠科研通 3078205
什么是DOI,文献DOI怎么找? 1690660
邀请新用户注册赠送积分活动 813983
科研通“疑难数据库(出版商)”最低求助积分说明 767924