Partial Domain Adaptation in Remaining Useful Life Prediction With Incomplete Target Data

预言 领域(数学分析) 计算机科学 人工智能 适应(眼睛) 机器学习 数据挖掘 人工神经网络 离群值 可靠性工程 工程类 数学分析 物理 数学 光学
作者
Xiang Li,Zhang We,Xu Li,Hongshen Hao
出处
期刊:IEEE-ASME Transactions on Mechatronics [Institute of Electrical and Electronics Engineers]
卷期号:29 (3): 1903-1913 被引量:114
标识
DOI:10.1109/tmech.2023.3325538
摘要

Intelligent machinery prognostics and health management (PHM) methods have been attracting growing attention in the past years, with the rapid development of the artificial intelligence algorithms. The remaining useful life (RUL) prediction problem is critical in prognostics for optimization of the maintenance strategy. Despite the promising advances, the current algorithms basically assume the training and testing entities are operating under identical condition, which is less practical in the real industries. In the cross-domain PHM studies, domain adaptation techniques have been successfully applied for building generalized data-driven models. However, the availability of target-domain data in full life cycle is basically required by the existing methods. In most scenarios, only the target data at early degradation period can be obtained, that poses great challenges in transfer learning. This article proposes a partial domain adaptation method for RUL prediction with incomplete target-domain data. Deep neural network-based adversarial learning strategy is adopted as the main framework, and the source-domain instance-weighted degradation fusion scheme is proposed for conditional domain adaptation at similar degradation levels. The source outliers can be well filtered out in learning generalized features across domains. Experiments of machine run-to-failure tests are implemented for validation, and the results indicate the proposed methodology is well suited for practical cross-domain RUL predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jay完成签到,获得积分10
刚刚
Lucky完成签到,获得积分10
刚刚
1秒前
友好的小翠完成签到,获得积分20
2秒前
Ava应助枝头树上的布谷鸟采纳,获得10
2秒前
2秒前
Aaron发布了新的文献求助10
3秒前
专注蛋挞完成签到,获得积分10
3秒前
3秒前
q12完成签到,获得积分10
3秒前
柠檬精翠翠完成签到 ,获得积分10
3秒前
4秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
leekk发布了新的文献求助10
5秒前
爱好钢笔完成签到 ,获得积分10
5秒前
liwei完成签到,获得积分10
6秒前
心语发布了新的文献求助10
7秒前
JamesPei应助kk采纳,获得10
7秒前
诗瑜完成签到,获得积分10
7秒前
asd完成签到,获得积分10
8秒前
陈哈哈发布了新的文献求助10
8秒前
8秒前
说几句发布了新的文献求助10
9秒前
10秒前
锅巴完成签到,获得积分10
10秒前
11秒前
11秒前
宇文书翠发布了新的文献求助10
11秒前
鸟与野鹿发布了新的文献求助10
12秒前
廿一雨完成签到,获得积分20
13秒前
鑫光熠熠发布了新的文献求助10
13秒前
14秒前
panpanda完成签到,获得积分10
14秒前
15秒前
疯子发布了新的文献求助10
15秒前
skotrie189完成签到,获得积分10
17秒前
qiao发布了新的文献求助10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646711
求助须知:如何正确求助?哪些是违规求助? 4772234
关于积分的说明 15036353
捐赠科研通 4805530
什么是DOI,文献DOI怎么找? 2569751
邀请新用户注册赠送积分活动 1526689
关于科研通互助平台的介绍 1485889