Optical Aberrations Correction in Postprocessing Using Imaging Simulation

计算机科学 人工智能 计算机视觉 光学相干层析成像 计算机图形学(图像) 光学 物理
作者
ChenShiqi,FENGHua-jun,PanDexin,XUZhi-hai,Liqi,ChenYueting
出处
期刊:ACM Transactions on Graphics [Association for Computing Machinery]
卷期号:40 (5): 1-15 被引量:10
标识
DOI:10.1145/3474088
摘要

As the popularity of mobile photography continues to grow, considerable effort is being invested in the reconstruction of degraded images. Due to the spatial variation in optical aberrations, which cannot be avoided during the lens design process, recent commercial cameras have shifted some of these correction tasks from optical design to postprocessing systems. However, without engaging with the optical parameters, these systems only achieve limited correction for aberrations.In this work, we propose a practical method for recovering the degradation caused by optical aberrations. Specifically, we establish an imaging simulation system based on our proposed optical point spread function model. Given the optical parameters of the camera, it generates the imaging results of these specific devices. To perform the restoration, we design a spatial-adaptive network model on synthetic data pairs generated by the imaging simulation system, eliminating the overhead of capturing training data by a large amount of shooting and registration. Moreover, we comprehensively evaluate the proposed method in simulations and experimentally with a customized digital-single-lens-reflex (DSLR) camera lens and HUAWEI HONOR 20, respectively. The experiments demonstrate that our solution successfully removes spatially variant blur and color dispersion. When compared with the state-of-the-art deblur methods, the proposed approach achieves better results with a lower computational overhead. Moreover, the reconstruction technique does not introduce artificial texture and is convenient to transfer to current commercial cameras. Project Page: \url{https://github.com/TanGeeGo/ImagingSimulation}.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
Young完成签到,获得积分10
11秒前
11秒前
kk完成签到,获得积分10
12秒前
zuhangzhao完成签到 ,获得积分10
13秒前
俏皮马里奥完成签到 ,获得积分10
19秒前
水本无忧87完成签到,获得积分10
22秒前
满意的念柏完成签到,获得积分10
33秒前
852应助CC采纳,获得20
34秒前
37秒前
yuhangcao完成签到,获得积分10
38秒前
fomo完成签到,获得积分10
40秒前
Moonflower完成签到,获得积分10
40秒前
盈盈发布了新的文献求助30
42秒前
48秒前
48秒前
48秒前
cdercder应助科研通管家采纳,获得10
48秒前
51秒前
十二完成签到 ,获得积分10
52秒前
swordshine完成签到,获得积分10
54秒前
1分钟前
smz完成签到 ,获得积分10
1分钟前
折柳完成签到 ,获得积分10
1分钟前
1分钟前
HR112完成签到 ,获得积分10
1分钟前
huanfid完成签到 ,获得积分0
1分钟前
核动力驴完成签到 ,获得积分10
1分钟前
熊二完成签到,获得积分10
1分钟前
帅气的沧海完成签到 ,获得积分10
1分钟前
CUG完成签到,获得积分10
1分钟前
kryptonite完成签到 ,获得积分10
1分钟前
wyh295352318完成签到 ,获得积分10
1分钟前
1分钟前
墨瞳完成签到,获得积分10
1分钟前
雪啊雪啊雪完成签到 ,获得积分10
1分钟前
1分钟前
青青河边草完成签到 ,获得积分10
1分钟前
hailian完成签到 ,获得积分10
1分钟前
青青河边草关注了科研通微信公众号
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798537
求助须知:如何正确求助?哪些是违规求助? 3344090
关于积分的说明 10318508
捐赠科研通 3060642
什么是DOI,文献DOI怎么找? 1679740
邀请新用户注册赠送积分活动 806769
科研通“疑难数据库(出版商)”最低求助积分说明 763353