Classification of COVID-19 pneumonia from chest CT images based on reconstructed super-resolution images and VGG neural network

卷积神经网络 人工智能 计算机科学 2019年冠状病毒病(COVID-19) 人工神经网络 模式识别(心理学) 图像质量 计算机辅助诊断 肺炎 计算机视觉 图像(数学) 放射科 医学 病理 内科学 传染病(医学专业) 疾病
作者
Wenjun Tan,Pan Liu,Xiaoshuo Li,Yao Liu,Qinghua Zhou,Chao Chen,Zhaoxuan Gong,Xiaoxia Yin,Yanchun Zhang
出处
期刊:Health information science and systems [Springer Nature]
卷期号:9 (1) 被引量:58
标识
DOI:10.1007/s13755-021-00140-0
摘要

The COVID-19 coronavirus has spread rapidly around the world and has caused global panic. Chest CT images play a major role in confirming positive COVID-19 patients. The computer aided diagnosis of COVID-19 from CT images based on artificial intelligence have been developed and deployed in some hospitals. But environmental influences and the movement of lung will affect the image quality, causing the lung parenchyma and pneumonia area unclear in CT images. Therefore, the performance of COVID-19's artificial intelligence diagnostic algorithm is reduced. If chest CT images are reconstructed, the accuracy and performance of the aided diagnostic algorithm may be improved. In this paper, a new aided diagnostic algorithm for COVID-19 based on super-resolution reconstructed images and convolutional neural network is presented. Firstly, the SRGAN neural network is used to reconstruct super-resolution images from original chest CT images. Then COVID-19 images and Non-COVID-19 images are classified from super-resolution chest CT images by VGG16 neural network. Finally, the performance of this method is verified by the pubic COVID-CT dataset and compared with other aided diagnosis methods of COVID-19. The experimental results show that improving the data quality through SRGAN neural network can greatly improve the final classification accuracy when the data quality is low. This proves that this method can obtain high accuracy, sensitivity and specificity in the examined test image datasets and has similar performance to other state-of-the-art deep learning aided algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怡然念之完成签到 ,获得积分10
1秒前
如意的梦秋完成签到,获得积分10
2秒前
小白完成签到,获得积分10
4秒前
ok123完成签到 ,获得积分10
7秒前
YCG完成签到 ,获得积分10
8秒前
where完成签到,获得积分10
9秒前
丿夜幕灬降临丨完成签到,获得积分10
10秒前
1111完成签到,获得积分10
11秒前
11秒前
强砸完成签到,获得积分10
12秒前
科研通AI2S应助kiwi采纳,获得10
13秒前
holi完成签到 ,获得积分10
15秒前
周芷卉完成签到 ,获得积分10
16秒前
anan完成签到 ,获得积分10
17秒前
LIX完成签到,获得积分10
19秒前
松鼠15111完成签到,获得积分10
19秒前
Dong完成签到 ,获得积分10
19秒前
今天只做一件事完成签到,获得积分0
20秒前
斯文败类应助liang采纳,获得10
21秒前
旧雨新知完成签到 ,获得积分0
21秒前
喵喵完成签到 ,获得积分10
22秒前
小螃蟹完成签到 ,获得积分10
22秒前
HEAUBOOK应助Geodada采纳,获得10
23秒前
24秒前
夜话风陵杜完成签到 ,获得积分0
28秒前
木槿花难开完成签到,获得积分10
31秒前
32秒前
zplease完成签到,获得积分10
34秒前
蓝桉发布了新的文献求助30
36秒前
鲍志泽发布了新的文献求助10
38秒前
Billie完成签到,获得积分10
39秒前
科研人完成签到 ,获得积分10
39秒前
Duckseid完成签到,获得积分10
40秒前
Geodada完成签到,获得积分10
40秒前
丸子完成签到 ,获得积分10
44秒前
csu_zs完成签到,获得积分10
47秒前
48秒前
魏煜佳完成签到,获得积分10
49秒前
hucanming完成签到,获得积分10
50秒前
just_cook完成签到,获得积分10
50秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801096
求助须知:如何正确求助?哪些是违规求助? 3346745
关于积分的说明 10330078
捐赠科研通 3063130
什么是DOI,文献DOI怎么找? 1681349
邀请新用户注册赠送积分活动 807509
科研通“疑难数据库(出版商)”最低求助积分说明 763726