A novel asynchronous deep reinforcement learning model with adaptive early forecasting method and reward incentive mechanism for short-term load forecasting

强化学习 计算机科学 异步通信 趋同(经济学) 人工智能 激励 期限(时间) 深度学习 机器学习 边距(机器学习) 钢筋 理论(学习稳定性) 工程类 经济 计算机网络 物理 量子力学 微观经济学 经济增长 结构工程
作者
Wenyu Zhang,Qian Chen,Jianyong Yan,Shuai Zhang,Jiyuan Xu
出处
期刊:Energy [Elsevier]
卷期号:236: 121492-121492 被引量:85
标识
DOI:10.1016/j.energy.2021.121492
摘要

Accurate load forecasting is challenging due to the significant uncertainty of load demand. Deep reinforcement learning, which integrates the nonlinear fitting ability of deep learning with the decision-making ability of reinforcement learning, has obtained effective solutions to various optimization problems. However, no study has been reported, which used deep reinforcement learning for short-term load forecasting because of the difficulties in handling the high temporal correlation and high convergence instability. In this study, a novel asynchronous deep reinforcement learning model is proposed for short-term load forecasting by addressing the above difficulties. First, a new asynchronous deep deterministic policy gradient method is proposed to disrupt the temporal correlation of different samples to reduce the overestimation of the expected total discount reward of the agent. Further, a new adaptive early forecasting method is proposed to reduce the time cost of model training by adaptively judging the training situation of the agent. Moreover, a new reward incentive mechanism is proposed to stabilize the convergence of model training by taking into account the trend of agent actions at different time steps. The experimental results show that the proposed model achieves higher forecasting accuracy, less time cost, and more stable convergence compared with eleven baseline models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风祈发布了新的文献求助10
刚刚
刚刚
1秒前
滑腻腻的小鱼完成签到,获得积分10
2秒前
真实的语堂完成签到,获得积分10
3秒前
3秒前
小羚羊完成签到,获得积分10
4秒前
刘帅帅发布了新的文献求助10
4秒前
kekong完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
5秒前
yhxwqkk完成签到 ,获得积分10
5秒前
hjh完成签到,获得积分10
6秒前
张一二完成签到,获得积分10
6秒前
智商洼地发布了新的文献求助10
7秒前
FashionBoy应助TTT采纳,获得10
7秒前
靓丽不评完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
俏皮芷蕊发布了新的文献求助100
9秒前
9秒前
ll完成签到,获得积分10
9秒前
10秒前
mama完成签到 ,获得积分10
10秒前
Ayiiiii完成签到 ,获得积分10
11秒前
白马非马完成签到,获得积分10
11秒前
12秒前
乐观的小鸡完成签到 ,获得积分10
12秒前
Jasper应助风祈采纳,获得10
12秒前
12秒前
13秒前
鲤鱼又菡完成签到,获得积分10
13秒前
14秒前
14秒前
nannan完成签到,获得积分10
15秒前
15秒前
15秒前
小二郎应助123采纳,获得10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711503
求助须知:如何正确求助?哪些是违规求助? 5204319
关于积分的说明 15264554
捐赠科研通 4863764
什么是DOI,文献DOI怎么找? 2610925
邀请新用户注册赠送积分活动 1561295
关于科研通互助平台的介绍 1518636