Toward autonomous additive manufacturing: Bayesian optimization on a 3D printer

3D打印 计算机科学 过程(计算) 贝叶斯优化 软件 领域(数学) 3d打印机 机器人 制造工程 软件工程 人工智能 工程类 机械工程 操作系统 数学 纯数学
作者
James R. Deneault,Jorge Chang,Jay Myung,Daylond Hooper,Andrew Armstrong,Mark A. Pitt,Benji Maruyama
出处
期刊:Mrs Bulletin [Springer Nature]
卷期号:46 (7): 566-575 被引量:15
标识
DOI:10.1557/s43577-021-00051-1
摘要

Abstract Materials exploration and development for three-dimensional (3D) printing technologies is slow and labor-intensive. Each 3D printing material developed requires unique print parameters be learned for successful part fabrication, and sub-optimal settings often result in defects or fabrication failure. To address this, we developed the Additive Manufacturing Autonomous Research System (AM ARES). As a preliminary test, we tasked AM ARES with autonomously modulating four print parameters to direct-write single-layer print features that matched target specifications. AM ARES employed automated image analysis as closed-loop feedback to an online Bayesian optimizer and learned to print target features in fewer than 100 experiments. In due course, this first-of-its-kind research robot will be tasked with autonomous multi-dimensional optimization of print parameters to accelerate materials discovery and development in the field of AM. The combining of open-source ARES OS software with low-cost hardware makes autonomous AM highly accessible, promoting mainstream adoption and rapid technological advancement. Impact statement The discovery and development of new materials and processes for three-dimensional (3D) printing is hindered by slow and labor-intensive trial-and-error optimization processes. Coupled with a pervasive lack of feedback mechanisms in 3D printers, this has inhibited the advancement and adoption of additive manufacturing (AM) technologies as a mainstream manufacturing approach. To accelerate new materials development and streamline the print optimization process for AM, we have developed a low-cost and accessible research robot that employs online machine learning planners, together with our ARES OS software, which we will release to the community as open-source, to rapidly and effectively optimize the complex, high-dimensional parameter sets associated with 3D printing. In preliminary trials, the first-of-its-kind research robot, the Additive Manufacturing Autonomous Research System (AM ARES), learned to print single-layer material extrusion specimens that closely matched targeted feature specifications in under 100 iterations. Delegating repetitive and high-dimensional cognitive labor to research robots such as AM ARES frees researchers to focus on more creative, insightful, and fundamental scientific work and reduces the cost and time required to develop new AM materials and processes. The teaming of human and robot researchers begets a synergy that will exponentially propel technological progress in AM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
long完成签到 ,获得积分10
1秒前
研友_X89o6n完成签到,获得积分10
3秒前
lgh完成签到,获得积分10
3秒前
4秒前
FashionBoy应助纳纳椰采纳,获得10
5秒前
田様应助小扑棱蛾子采纳,获得10
5秒前
6秒前
babe完成签到 ,获得积分10
6秒前
HLT完成签到 ,获得积分10
8秒前
9秒前
研友_VZG7GZ应助安详的小翠采纳,获得10
9秒前
10秒前
11秒前
阿蒙完成签到,获得积分10
12秒前
13秒前
iNk应助过时的机器猫采纳,获得20
15秒前
仲大船发布了新的文献求助10
15秒前
魔力巴啦啦完成签到 ,获得积分10
15秒前
NexusExplorer应助真实的小伙采纳,获得10
15秒前
16秒前
纳纳椰发布了新的文献求助10
18秒前
20秒前
刘明生发布了新的文献求助10
21秒前
23秒前
李爱国应助科研通管家采纳,获得80
23秒前
何相逢应助科研通管家采纳,获得10
23秒前
zhuxiaoer发布了新的文献求助10
23秒前
Orange应助科研通管家采纳,获得10
23秒前
深情安青应助科研通管家采纳,获得10
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
NexusExplorer应助科研通管家采纳,获得10
23秒前
纳纳椰完成签到,获得积分10
23秒前
丘比特应助科研通管家采纳,获得10
23秒前
23秒前
24秒前
26秒前
桐桐应助cxlcxl采纳,获得10
26秒前
Ava应助美味拖拉机采纳,获得30
27秒前
顾矜应助风趣的芙蓉采纳,获得50
27秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 700
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
PBSM: Predictive Bi-Preference Stable Matching in Spatial Crowdsourcing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4126291
求助须知:如何正确求助?哪些是违规求助? 3663886
关于积分的说明 11593318
捐赠科研通 3363474
什么是DOI,文献DOI怎么找? 1848222
邀请新用户注册赠送积分活动 912232
科研通“疑难数据库(出版商)”最低求助积分说明 827947