PLGA公司
乙醇酸
辛伐他汀
透明质酸
组织工程
纳米纤维
脚手架
生物医学工程
静电纺丝
材料科学
化学
化学工程
乳酸
聚合物
纳米技术
复合材料
纳米颗粒
药理学
解剖
医学
工程类
生物
细菌
遗传学
作者
Zahra Malekpour,Vajihe Akbari,Jaleh Varshosaz,Azade Taheri
摘要
Periodontal diseases can lead to soft tissue defects. Tissue engineering can provide functional replacements for damaged tissues. Recently, electrospun nanofibers have attracted great interest for tissue engineering and drug delivery applications. This has been revealed that statins exhibit positive impacts on the proliferation and regeneration of periodontal tissues. Electrospun simvastatin loaded poly (lactic-co-glycolic acid) (SIM-PLGA-NF) were prepared using electrospinning technique. Optimal conditions for preparation of SIM-PLGA-NF (PLGA concentration of 30 wt%, voltage of 15 kV, and flow rate of 1.5 ml h-1 ) were identified using a 23 factorial design. The optimized SIM-PLGA-NFs (diameter of 640.2 ± 32.5 nm and simvastatin entrapment efficacy of 99.6 ± 1.5%) were surface modified with 1% w/v hyaluronic acid solution (1%HA- SIM-PLGA-NF) to improve their compatibility with fibroblasts and potential application as a periodontal tissue engineering scaffold. HA-SIM-PLGA NFs were analyzed using SEM, FTIR, and XRD. 1%HA-SIM-PLGA-NF had uniform, bead-free and interwoven morphology, which is similar to the extracellular matrix. The mechanical performance of SIM-PLGA-NFs and release profile of simvastatin from these nanofibers have been also greatly improved after coating with HA. In vitro cellular tests showed that the proliferation, adhesion, and differentiation of fibroblast cells positively enhanced on the surface of 1%HA- SIM-PLGA-NF. These results demonstrate the potential application of 1%HA-SIM-PLGA-NFs as a scaffold for periodontal tissue engineering.
科研通智能强力驱动
Strongly Powered by AbleSci AI