KronoDroid: Time-based Hybrid-featured Dataset for Effective Android Malware Detection and Characterization

Android(操作系统) 计算机科学 恶意软件 Android恶意软件 恶意软件分析 时间戳 系统调用 快照(计算机存储) 数据挖掘 机器学习 人工智能 操作系统 计算机安全
作者
Alejandro Guerra-Manzanares,Hayretdin Bahşi,Sven Nõmm
出处
期刊:Computers & Security [Elsevier BV]
卷期号:110: 102399-102399 被引量:76
标识
DOI:10.1016/j.cose.2021.102399
摘要

Android malware evolution has been neglected by the available data sets, thus providing a static snapshot of a non-stationary phenomenon. The impact of the time variable has not had the deserved attention by the Android malware research, omitting its degenerative impact on the performance of machine learning-based classifiers (i.e., concept drift). Besides, the sources of dynamic data and their particularities have been overlooked (i.e., real devices and emulators). Critical factors to take into account when aiming to build more effective, robust, and long-lasting Android malware detection systems. In this research, different sources of benign and malware data are merged, generating a data set encompassing a larger time frame and 489 static and dynamic features are collected. The particularities of the source of the dynamic features (i.e., system calls) are attended using an emulator and a real device, thus generating two equally featured sub-datasets. The main outcome of this research is a novel, labeled, and hybrid-featured Android dataset that provides timestamps for each data sample, covering all years of Android history, from 2008-2020, and considering the distinct dynamic data sources. The emulator data set is composed of 28,745 malicious apps from 209 malware families and 35,246 benign samples. The real device data set contains 41,382 malware, belonging to 240 malware families, and 36,755 benign apps. Made publicly available as KronoDroid, in a structured format, it is the largest hybrid-featured Android dataset and the only one providing timestamped data, considering dynamic sources' particularities and including samples from over 209 Android malware families.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助抹茶肥肠采纳,获得10
1秒前
tian发布了新的文献求助10
2秒前
QR发布了新的文献求助10
2秒前
3秒前
3秒前
4秒前
5秒前
科研通AI5应助老木虫采纳,获得10
5秒前
6秒前
sun2发布了新的文献求助10
9秒前
pluto应助学术laji采纳,获得10
10秒前
jenningseastera应助LZX采纳,获得10
12秒前
科研通AI2S应助tian采纳,获得10
13秒前
jenningseastera应助王恒采纳,获得10
14秒前
堀江真夏完成签到 ,获得积分10
14秒前
15秒前
18秒前
jenningseastera应助草木采纳,获得10
19秒前
白许四十完成签到,获得积分10
19秒前
玉碎星发布了新的文献求助10
20秒前
舒适的冰凡完成签到,获得积分10
22秒前
yoasobi2334完成签到,获得积分10
22秒前
jxx完成签到,获得积分10
24秒前
曾淋发布了新的文献求助30
24秒前
木cheng发布了新的文献求助10
25秒前
BY完成签到,获得积分10
25秒前
Lucas应助sun2采纳,获得10
26秒前
科研通AI2S应助LZX采纳,获得10
31秒前
jiafang完成签到,获得积分10
32秒前
李健的小迷弟应助Jane采纳,获得30
35秒前
37秒前
希法完成签到,获得积分10
37秒前
glowworm完成签到 ,获得积分10
40秒前
41秒前
木木完成签到,获得积分10
43秒前
43秒前
111完成签到,获得积分10
47秒前
48秒前
情怀应助是小明啦采纳,获得10
48秒前
不倦应助展七采纳,获得30
51秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778099
求助须知:如何正确求助?哪些是违规求助? 3323764
关于积分的说明 10215701
捐赠科研通 3038943
什么是DOI,文献DOI怎么找? 1667723
邀请新用户注册赠送积分活动 798368
科研通“疑难数据库(出版商)”最低求助积分说明 758339