亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning model for early prediction of acute kidney injury (AKI) in pediatric critical care

医学 急性肾损伤 肌酐 肾脏替代疗法 重症监护医学 阶段(地层学) 肾脏疾病 急诊医学 疾病严重程度 内科学 生物 古生物学
作者
Junzi Dong,Ting Feng,Binod Thapa-Chhetry,Byung Gu Cho,Tunu Shum,David Inwald,Christopher J. L. Newth,Vinay Vaidya
出处
期刊:Critical Care [Springer Nature]
卷期号:25 (1): 288-288 被引量:212
标识
DOI:10.1186/s13054-021-03724-0
摘要

Abstract Background Acute kidney injury (AKI) in pediatric critical care patients is diagnosed using elevated serum creatinine, which occurs only after kidney impairment. There are no treatments other than supportive care for AKI once it has developed, so it is important to identify patients at risk to prevent injury. This study develops a machine learning model to learn pre-disease patterns of physiological measurements and predict pediatric AKI up to 48 h earlier than the currently established diagnostic guidelines. Methods EHR data from 16,863 pediatric critical care patients between 1 month to 21 years of age from three independent institutions were used to develop a single machine learning model for early prediction of creatinine-based AKI using intelligently engineered predictors, such as creatinine rate of change, to automatically assess real-time AKI risk. The primary outcome is prediction of moderate to severe AKI (Stage 2/3), and secondary outcomes are prediction of any AKI (Stage 1/2/3) and requirement of renal replacement therapy (RRT). Predictions generate alerts allowing fast assessment and reduction of AKI risk, such as: “patient has 90% risk of developing AKI in the next 48 h” along with contextual information and suggested response such as “patient on aminoglycosides, suggest check level and review dose and indication”. Results The model was successful in predicting Stage 2/3 AKI prior to detection by conventional criteria with a median lead-time of 30 h at AUROC of 0.89. The model predicted 70% of subsequent RRT episodes, 58% of Stage 2/3 episodes, and 41% of any AKI episodes. The ratio of false to true alerts of any AKI episodes was approximately one-to-one (PPV 47%). Among patients predicted, 79% received potentially nephrotoxic medication after being identified by the model but before development of AKI. Conclusions As the first multi-center validated AKI prediction model for all pediatric critical care patients, the machine learning model described in this study accurately predicts moderate to severe AKI up to 48 h in advance of AKI onset. The model may improve outcome of pediatric AKI by providing early alerting and actionable feedback, potentially preventing or reducing AKI by implementing early measures such as medication adjustment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学生信的大叔完成签到,获得积分10
4秒前
22秒前
量子星尘发布了新的文献求助10
30秒前
Qing完成签到 ,获得积分10
51秒前
Criminology34应助科研通管家采纳,获得10
57秒前
Criminology34应助科研通管家采纳,获得10
57秒前
Criminology34应助科研通管家采纳,获得10
58秒前
Criminology34应助科研通管家采纳,获得10
58秒前
Criminology34应助科研通管家采纳,获得10
58秒前
从前的我完成签到 ,获得积分10
1分钟前
Wa1Zh0u发布了新的文献求助10
1分钟前
1分钟前
研友_Zb17ln发布了新的文献求助10
1分钟前
null应助研友_Zb17ln采纳,获得10
1分钟前
1分钟前
SDNUDRUG完成签到,获得积分10
1分钟前
2分钟前
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
3分钟前
wggggggy发布了新的文献求助10
3分钟前
思源应助zone54188采纳,获得10
3分钟前
清风明月完成签到 ,获得积分10
3分钟前
haprier完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
今后应助无情的琳采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
ding应助Wa1Zh0u采纳,获得30
4分钟前
无情的琳发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5724022
求助须知:如何正确求助?哪些是违规求助? 5283494
关于积分的说明 15299539
捐赠科研通 4872214
什么是DOI,文献DOI怎么找? 2616665
邀请新用户注册赠送积分活动 1566557
关于科研通互助平台的介绍 1523402