Machine learning model for early prediction of acute kidney injury (AKI) in pediatric critical care

医学 急性肾损伤 肌酐 肾脏替代疗法 重症监护医学 阶段(地层学) 肾脏疾病 急诊医学 疾病严重程度 内科学 生物 古生物学
作者
Junzi Dong,Ting Feng,Binod Thapa-Chhetry,Byung Gu Cho,Tunu Shum,David Inwald,Christopher J. L. Newth,Vinay Vaidya
出处
期刊:Critical Care [BioMed Central]
卷期号:25 (1) 被引量:79
标识
DOI:10.1186/s13054-021-03724-0
摘要

Abstract Background Acute kidney injury (AKI) in pediatric critical care patients is diagnosed using elevated serum creatinine, which occurs only after kidney impairment. There are no treatments other than supportive care for AKI once it has developed, so it is important to identify patients at risk to prevent injury. This study develops a machine learning model to learn pre-disease patterns of physiological measurements and predict pediatric AKI up to 48 h earlier than the currently established diagnostic guidelines. Methods EHR data from 16,863 pediatric critical care patients between 1 month to 21 years of age from three independent institutions were used to develop a single machine learning model for early prediction of creatinine-based AKI using intelligently engineered predictors, such as creatinine rate of change, to automatically assess real-time AKI risk. The primary outcome is prediction of moderate to severe AKI (Stage 2/3), and secondary outcomes are prediction of any AKI (Stage 1/2/3) and requirement of renal replacement therapy (RRT). Predictions generate alerts allowing fast assessment and reduction of AKI risk, such as: “patient has 90% risk of developing AKI in the next 48 h” along with contextual information and suggested response such as “patient on aminoglycosides, suggest check level and review dose and indication”. Results The model was successful in predicting Stage 2/3 AKI prior to detection by conventional criteria with a median lead-time of 30 h at AUROC of 0.89. The model predicted 70% of subsequent RRT episodes, 58% of Stage 2/3 episodes, and 41% of any AKI episodes. The ratio of false to true alerts of any AKI episodes was approximately one-to-one (PPV 47%). Among patients predicted, 79% received potentially nephrotoxic medication after being identified by the model but before development of AKI. Conclusions As the first multi-center validated AKI prediction model for all pediatric critical care patients, the machine learning model described in this study accurately predicts moderate to severe AKI up to 48 h in advance of AKI onset. The model may improve outcome of pediatric AKI by providing early alerting and actionable feedback, potentially preventing or reducing AKI by implementing early measures such as medication adjustment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
零吾完成签到 ,获得积分10
1秒前
jennie完成签到 ,获得积分10
2秒前
2秒前
CodeCraft应助xu采纳,获得10
2秒前
日出发布了新的文献求助10
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
TT应助科研通管家采纳,获得10
3秒前
淡然冬灵应助科研通管家采纳,获得30
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
打工牛牛应助科研通管家采纳,获得20
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
昏睡的蟠桃应助科研通管家采纳,获得200
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
笙陌应助科研通管家采纳,获得10
3秒前
小白应助科研通管家采纳,获得20
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
HEAUBOOK应助科研通管家采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
HEAUBOOK应助科研通管家采纳,获得10
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
HEAUBOOK应助科研通管家采纳,获得10
4秒前
5秒前
武傲翔发布了新的文献求助10
7秒前
7秒前
FOX完成签到,获得积分10
10秒前
osmanthus完成签到,获得积分10
10秒前
小木虫完成签到,获得积分10
10秒前
傻瓜子完成签到,获得积分10
11秒前
能HJY发布了新的文献求助10
11秒前
嗯好22222完成签到 ,获得积分10
11秒前
遇见飞儿完成签到,获得积分10
11秒前
zhiwei发布了新的文献求助200
12秒前
13秒前
kiki完成签到 ,获得积分10
14秒前
KanmenRider完成签到,获得积分10
15秒前
Zhou发布了新的文献求助30
15秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801134
求助须知:如何正确求助?哪些是违规求助? 3346777
关于积分的说明 10330258
捐赠科研通 3063151
什么是DOI,文献DOI怎么找? 1681383
邀请新用户注册赠送积分活动 807540
科研通“疑难数据库(出版商)”最低求助积分说明 763728