Recognition of underwater moving submarine based on lidar intensity image

潜艇 水下 强度(物理) 地质学 风浪 风速 表面波 有效波高 遥感 波高 激光雷达 反射(计算机编程) 声学 光学 计算机科学 物理 海洋学 程序设计语言
作者
Wei Zhao,Sining Li,Zhenshan Qiu,Jianfeng Sun,Yinbo Zhang,Hailong Zhang
出处
期刊:Sixteenth National Conference on Laser Technology and Optoelectronics
标识
DOI:10.1117/12.2602013
摘要

The surface reflected wave is formed by the wave of the sea surface when the submarine is sailing underwater. The intensity of the reflected wave decreases with the increase of the depth of the submarine, which makes it difficult to detect the submarine based on the height characteristics of the surface wave. For this problem, the theory of underwater submarine detection is studied based on the relationship between the intensity image of lidar and the normal vector distribution of target surface. First, the two-scale wave theory was proposed to establish a simulation model of the sea surface wave, and the microsurface element normal vector was solved for the gridded sea surface. Under the premise of considering the shielding effect, the intensity image of the sea surface wave including the submarine reflected wave was obtained by coupling the lidar equation with the sea surface wave model. Finally, principal component analysis (PCA) and BP neural network are used to extract and recognize the characteristics of submarine and surface intensity images. The results show that at low wind speed and small wind field, the recognition rate of the submarine with a depth of 19m is more than 90%. With the increase of the depth, wind speed and wind field, the recognition rate decreases gradually. This study provides a new idea for lidar submarine reflection wave detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
xh发布了新的文献求助10
3秒前
高大的蓝天完成签到,获得积分10
5秒前
6秒前
7秒前
小二郎应助意忆采纳,获得10
8秒前
9秒前
12秒前
12秒前
Akim应助HMO_eee采纳,获得10
12秒前
13秒前
14秒前
段辉发布了新的文献求助10
15秒前
科目三应助守望阳光1采纳,获得10
15秒前
高大zj发布了新的文献求助10
15秒前
16秒前
16秒前
脑洞疼应助Natsu采纳,获得10
18秒前
W_w完成签到 ,获得积分10
18秒前
jenningseastera应助胖小羊采纳,获得10
18秒前
铀氪锂锂发布了新的文献求助10
18秒前
Amin发布了新的文献求助10
19秒前
19秒前
深情夏彤完成签到,获得积分10
21秒前
21秒前
W_w关注了科研通微信公众号
22秒前
jenningseastera应助Lu采纳,获得10
22秒前
科研猫完成签到,获得积分10
24秒前
24秒前
意忆发布了新的文献求助10
25秒前
Lucas应助黄黄黄采纳,获得10
25秒前
明理楷瑞发布了新的文献求助10
27秒前
27秒前
666发布了新的文献求助10
27秒前
zdesfsfa完成签到,获得积分10
28秒前
28秒前
科研通AI5应助惠惠不会采纳,获得10
30秒前
耿耿发布了新的文献求助10
31秒前
31秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787206
求助须知:如何正确求助?哪些是违规求助? 3332844
关于积分的说明 10257862
捐赠科研通 3048264
什么是DOI,文献DOI怎么找? 1673053
邀请新用户注册赠送积分活动 801616
科研通“疑难数据库(出版商)”最低求助积分说明 760287