计算机科学
目标检测
对象(语法)
人工智能
特征(语言学)
集合(抽象数据类型)
探测器
水准点(测量)
计算机视觉
模式识别(心理学)
趋同(经济学)
端到端原则
训练集
地铁列车时刻表
图像(数学)
编码(集合论)
电信
操作系统
哲学
经济
程序设计语言
地理
经济增长
语言学
大地测量学
作者
Peize Sun,Rufeng Zhang,Yi Jiang,Tao Kong,Chenfeng Xu,Wei Zhan,Masayoshi Tomizuka,Lei Li,Zehuan Yuan,Changhu Wang,Ping Luo
标识
DOI:10.1109/cvpr46437.2021.01422
摘要
We present Sparse R-CNN, a purely sparse method for object detection in images. Existing works on object detection heavily rely on dense object candidates, such as k anchor boxes pre-defined on all grids of image feature map of size H × W. In our method, however, a fixed sparse set of learned object proposals, total length of N, are provided to object recognition head to perform classification and location. By eliminating HWk (up to hundreds of thousands) hand-designed object candidates to N (e.g. 100) learnable proposals, Sparse R-CNN completely avoids all efforts related to object candidates design and many-to-one label assignment. More importantly, final predictions are directly output without non-maximum suppression post-procedure. Sparse R-CNN demonstrates accuracy, run-time and training convergence performance on par with the well-established detector baselines on the challenging COCO dataset, e.g., achieving 45.0 AP in standard 3× training schedule and running at 22 fps using ResNet-50 FPN model. We hope our work could inspire re-thinking the convention of dense prior in object detectors. The code is available at: https://github.com/PeizeSun/SparseR-CNN.
科研通智能强力驱动
Strongly Powered by AbleSci AI