Machine learning and computation-enabled intelligent sensor design

计算机科学 计算 无线传感器网络 人工智能 嵌入式系统 实时计算 算法 计算机网络
作者
Zachary S. Ballard,Calvin Brown,Asad M. Madni,Aydogan Özcan
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:3 (7): 556-565 被引量:179
标识
DOI:10.1038/s42256-021-00360-9
摘要

Over the past several decades the dramatic increase in the availability of computational resources, coupled with the maturation of machine learning, has profoundly impacted sensor technology. In this Perspective, we discuss computational sensing with a focus on intelligent sensor system design. By leveraging inverse design and machine learning techniques, data acquisition hardware can be fundamentally redesigned to ‘lock-in’ to the optimal sensing data with respect to a user-defined cost function or design constraint. We envision a new generation of computational sensing systems that reduce the data burden while also improving sensing capabilities, enabling low-cost and compact sensor implementations engineered through iterative analysis of data-driven sensing outcomes. We believe that the methodologies discussed in this Perspective will permeate the design phase of sensing hardware, and thereby will fundamentally change and challenge traditional, intuition-driven sensor and readout designs in favour of application-targeted and perhaps highly non-intuitive implementations. Such computational sensors enabled by machine learning can therefore foster new and widely distributed applications that will benefit from ‘big data’ analytics and the internet of things to create powerful sensing networks, impacting various fields, including for example, biomedical diagnostics, environmental sensing and global health, among others. Traditional sensing techniques apply computational analysis at the output of the sensor hardware to separate signal from noise. A new, more holistic and potentially more powerful approach proposed in this Perspective is designing intelligent sensor systems that ‘lock-in’ to optimal sensing of data, making use of machine leaning strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助十三采纳,获得10
刚刚
传奇3应助ICE采纳,获得10
刚刚
youyou完成签到,获得积分20
刚刚
科研通AI6应助shirley采纳,获得10
1秒前
1秒前
1秒前
han发布了新的文献求助10
1秒前
makimaki完成签到,获得积分10
1秒前
meng完成签到,获得积分10
2秒前
无情元菱完成签到 ,获得积分10
3秒前
3秒前
3秒前
makimaki发布了新的文献求助10
4秒前
123完成签到,获得积分10
4秒前
爆米花应助zhang采纳,获得10
4秒前
专一的白完成签到,获得积分10
4秒前
4秒前
librahapper完成签到,获得积分10
5秒前
福yyy完成签到 ,获得积分10
5秒前
清爽的诗槐完成签到,获得积分0
5秒前
5秒前
Cccc小懒发布了新的文献求助10
5秒前
5秒前
付佳如发布了新的文献求助10
5秒前
无极微光应助爬不起来采纳,获得20
6秒前
6秒前
6秒前
糖豆豆完成签到,获得积分20
6秒前
满意的大地完成签到,获得积分10
6秒前
7秒前
William_l_c发布了新的文献求助10
7秒前
夏樱发布了新的文献求助60
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
ywang发布了新的文献求助10
9秒前
加满都发布了新的文献求助10
9秒前
9秒前
李楠发布了新的文献求助10
9秒前
小马甲应助寒冷的怀曼采纳,获得10
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5001060
求助须知:如何正确求助?哪些是违规求助? 4246201
关于积分的说明 13228838
捐赠科研通 4044813
什么是DOI,文献DOI怎么找? 2212873
邀请新用户注册赠送积分活动 1223033
关于科研通互助平台的介绍 1143352