Machine learning and computation-enabled intelligent sensor design

计算机科学 计算 无线传感器网络 人工智能 嵌入式系统 实时计算 算法 计算机网络
作者
Zachary S. Ballard,Calvin Brown,Asad M. Madni,Aydogan Özcan
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:3 (7): 556-565 被引量:161
标识
DOI:10.1038/s42256-021-00360-9
摘要

Over the past several decades the dramatic increase in the availability of computational resources, coupled with the maturation of machine learning, has profoundly impacted sensor technology. In this Perspective, we discuss computational sensing with a focus on intelligent sensor system design. By leveraging inverse design and machine learning techniques, data acquisition hardware can be fundamentally redesigned to ‘lock-in’ to the optimal sensing data with respect to a user-defined cost function or design constraint. We envision a new generation of computational sensing systems that reduce the data burden while also improving sensing capabilities, enabling low-cost and compact sensor implementations engineered through iterative analysis of data-driven sensing outcomes. We believe that the methodologies discussed in this Perspective will permeate the design phase of sensing hardware, and thereby will fundamentally change and challenge traditional, intuition-driven sensor and readout designs in favour of application-targeted and perhaps highly non-intuitive implementations. Such computational sensors enabled by machine learning can therefore foster new and widely distributed applications that will benefit from ‘big data’ analytics and the internet of things to create powerful sensing networks, impacting various fields, including for example, biomedical diagnostics, environmental sensing and global health, among others. Traditional sensing techniques apply computational analysis at the output of the sensor hardware to separate signal from noise. A new, more holistic and potentially more powerful approach proposed in this Perspective is designing intelligent sensor systems that ‘lock-in’ to optimal sensing of data, making use of machine leaning strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WuYiHHH发布了新的文献求助10
刚刚
sss完成签到,获得积分10
1秒前
1秒前
qiao应助柏不斜采纳,获得10
5秒前
领导范儿应助毛毛虫采纳,获得10
8秒前
11秒前
Akim应助DIngqin采纳,获得10
12秒前
13秒前
缓慢采柳发布了新的文献求助80
13秒前
活力酒窝完成签到,获得积分10
14秒前
自由水风发布了新的文献求助10
17秒前
17秒前
冷傲的冰绿完成签到,获得积分10
20秒前
CodeCraft应助无风采纳,获得10
23秒前
24秒前
24秒前
研友_n0gOKL发布了新的文献求助10
24秒前
Jenny发布了新的文献求助10
24秒前
周末万岁完成签到,获得积分10
26秒前
27秒前
打打应助尺八采纳,获得10
27秒前
28秒前
29秒前
29秒前
至秦完成签到,获得积分10
30秒前
31秒前
胡桃完成签到,获得积分10
32秒前
32秒前
卡布达发布了新的文献求助30
33秒前
33秒前
自由水风完成签到,获得积分10
34秒前
科研通AI2S应助Jenny采纳,获得10
34秒前
毛毛虫发布了新的文献求助10
34秒前
电催化托发布了新的文献求助50
36秒前
wxy发布了新的文献求助10
36秒前
毛豆爸爸发布了新的文献求助10
37秒前
MiriamYu完成签到,获得积分10
38秒前
38秒前
38秒前
桐桐应助一颗橙子采纳,获得10
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781669
求助须知:如何正确求助?哪些是违规求助? 3327234
关于积分的说明 10230111
捐赠科研通 3042093
什么是DOI,文献DOI怎么找? 1669791
邀请新用户注册赠送积分活动 799335
科研通“疑难数据库(出版商)”最低求助积分说明 758774