Tropospheric delay parameters derived from GNSS-tracking data of a fast-moving fleet of trains

天顶 全球导航卫星系统应用 精密点定位 对流层 气象学 数据同化 数值天气预报 大地测量学 卫星 环境科学 全球定位系统 运动学 遥感 计算机科学 地理 电信 物理 航空航天工程 工程类 经典力学
作者
Matthias Aichinger‐Rosenberger,Natalia Hanna,Robert Weber
标识
DOI:10.5194/egusphere-egu21-14662
摘要

<p>Electromagnetic signals, as broadcasted by Global Navigation Satellite Systems (GNSS), are delayed when travelling through the Earth’s atmosphere due to the presence of water vapour. Parametrisations of this delay, most prominently the Zenith Total Delay (ZTD) parameter, have been studied extensively and proven to provide substantial benefits for atmospheric research and especially the Numerical Weather Prediction (NWP) model performance. Typically, regional/global networks of static reference stations are utilized to derive ZTD along with other parameters of interest in GNSS analysis (e.g. station coordinates). Results are typically used as a contributing data source for determining the initial conditions of NWP models, a process referred to as Data Assimilation (DA).</p><p>This contribution goes beyond the approach outlined above as it shows how reasonable tropospheric parameters can be derived from highly kinematic, single-frequency (SF) GNSS data. The utilized data was gathered at trains by the Austrian Federal Railways (ÖBB) and processed using the Precise Point Positioning (PPP) technique. Although the special nature of the observations yields several challenges concerning data processing, we show that reasonable results for ZTD estimates can be obtained for all four analysed test cases by using different PPP processing strategies. Comparison with ZTD calculated from ERA5 reanalysis data yields a very high correlation and an overall agreement from the low millimetre-range up to 5 cm, depending on solution and analysed travelling track. We also present the first tests of assimilation into a numerical weather prediction (NWP) model which show the reasonable quality of the results as between 30-100 % of the observations are accepted by the model. Furthermore, we investigate means to transfer the developed ideas to an operational stage in order to exploit the huge benefits (horizontal/temporal resolution) of this special dataset for operational weather forecasting. </p>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
企鹅发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
1秒前
陈广辉发布了新的文献求助10
1秒前
Downey发布了新的文献求助30
1秒前
NexusExplorer应助生动白开水采纳,获得10
1秒前
bzbzbzbzb发布了新的文献求助10
1秒前
蓝桉完成签到,获得积分10
1秒前
天天天蓝完成签到,获得积分10
2秒前
Kyros发布了新的文献求助30
2秒前
3秒前
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
文文武发布了新的文献求助10
4秒前
东方三问发布了新的文献求助10
5秒前
boom完成签到,获得积分10
5秒前
5秒前
天宇星02给天宇星02的求助进行了留言
5秒前
隆咚锵完成签到,获得积分10
5秒前
慕青应助景飞丹采纳,获得10
5秒前
6秒前
科研小白发布了新的文献求助10
6秒前
6秒前
冷静如柏完成签到,获得积分10
6秒前
6秒前
不解释12112完成签到,获得积分10
7秒前
7秒前
科研通AI6应助Ftplanet采纳,获得10
8秒前
路寻发布了新的文献求助10
8秒前
8秒前
小橘发布了新的文献求助30
8秒前
quhayley应助远志采纳,获得10
9秒前
9秒前
发大财关注了科研通微信公众号
9秒前
10秒前
11111发布了新的文献求助10
10秒前
张钰子完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5506326
求助须知:如何正确求助?哪些是违规求助? 4601891
关于积分的说明 14478915
捐赠科研通 4535908
什么是DOI,文献DOI怎么找? 2485682
邀请新用户注册赠送积分活动 1468480
关于科研通互助平台的介绍 1441014