Combination of TNM staging and pathway based risk score models in patients with gastric cancer

放化疗 阶段(地层学) 医学 肿瘤科 内科学 癌症 基因签名 比例危险模型 TNM分期系统 基因 登台系统 生物 基因表达 生物化学 古生物学
作者
Yangyang Zhou,Yan‐Ting Kang,Chao Chen,Fanfan Xu,Haonan Wang,Rong Jin
出处
期刊:Journal of Cellular Biochemistry [Wiley]
卷期号:119 (4): 3608-3617 被引量:30
标识
DOI:10.1002/jcb.26563
摘要

Abstract Due to the complexity and heterogeneity of gastric cancer (GC) in individual patient, current staging system is inadequate for predicting outcome of GC. Comprehensive computational and bioinformatics approach may triumph for the prediction. In this study, GC patients were devided according to stage and treatment: curative surgery plus chemoradiotherapy in stage II, curative surgery plus chemoradiotherapy in stages III, and IV, unresectable metastatic gastric cancer. The training sets were downloaded from GEO datasets (GSE26253 and GSE14208). Gene set enrichment analysis (GSEA) was performed to explore enriched difference between recurrence and nonrecurrence. The core enrichment genes of enriched pathways significantly associated with recurrence or progression were identified using Cox proportional hazards analysis. Thereafter, the risk score models were externally validated in independent datasets‐GSE15081 and The Cancer Genome Atlas (TCGA). We generated respective risk score models of patients in different stages and treatment. A five‐gene signature comprising FARP1, SGCE, SGCA, LAMA4, and COL9A2 was strongly associated with recurrence of patients with curative surgery plus chemoradiotherapy in stage II. A six‐gene signature consisting of SHH, NF1, AP4B1, COMP, MATN3, and CCL8 was correlated with recurrence of patients with curative surgery plus chemoradiotherapy in stages III and IV. And a four‐gene signature composing of ABCC2, AHNAK2, RNF43, and GSPT2 was highly related to progression of patients with unresectable metastatic GC. Taking into consideration TNM stage and gene signature reflecting recurrence or progression, the risk score models significantly improved the accuracy in predicting outcome of GC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鲲鹏完成签到 ,获得积分10
刚刚
onevip完成签到,获得积分0
5秒前
手帕很忙完成签到,获得积分10
7秒前
西山菩提完成签到,获得积分10
9秒前
Ayn完成签到 ,获得积分10
9秒前
科研通AI5应助雅香采纳,获得10
11秒前
ESC惠子子子子子完成签到 ,获得积分10
12秒前
忒寒碜完成签到,获得积分10
17秒前
18秒前
19秒前
背后海亦发布了新的文献求助10
25秒前
鲤鱼越越完成签到 ,获得积分10
27秒前
ymxlcfc完成签到 ,获得积分10
29秒前
ding应助sdfsdf采纳,获得10
31秒前
kfh发布了新的文献求助10
32秒前
yellow完成签到,获得积分10
39秒前
42秒前
hky完成签到 ,获得积分10
43秒前
荼白完成签到 ,获得积分10
44秒前
飞龙在天完成签到,获得积分0
51秒前
林小昀完成签到 ,获得积分10
52秒前
雪山飞龙发布了新的文献求助10
52秒前
kfh完成签到,获得积分20
53秒前
滴滴完成签到 ,获得积分10
54秒前
fengjoy完成签到,获得积分10
1分钟前
ycool完成签到 ,获得积分10
1分钟前
1分钟前
优雅含灵完成签到 ,获得积分10
1分钟前
从心随缘完成签到 ,获得积分10
1分钟前
Silieze完成签到,获得积分10
1分钟前
雨落瑾年完成签到,获得积分10
1分钟前
咪路发布了新的文献求助10
1分钟前
cq_2完成签到,获得积分0
1分钟前
天天开心完成签到 ,获得积分10
1分钟前
咪路完成签到,获得积分10
1分钟前
余味应助科研通管家采纳,获得10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
共享精神应助科研通管家采纳,获得10
1分钟前
CipherSage应助科研通管家采纳,获得10
1分钟前
充电宝应助fengjoy采纳,获得10
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792563
求助须知:如何正确求助?哪些是违规求助? 3336787
关于积分的说明 10282162
捐赠科研通 3053570
什么是DOI,文献DOI怎么找? 1675652
邀请新用户注册赠送积分活动 803629
科研通“疑难数据库(出版商)”最低求助积分说明 761481