计算机科学
人工智能
卷积神经网络
恒虚警率
探测器
可靠性(半导体)
合成孔径雷达
模式识别(心理学)
深度学习
计算复杂性理论
目标检测
算法
电信
量子力学
物理
功率(物理)
作者
Davide Cozzolino,Gerardo Di Martino,Giovanni Poggi,Luisa Verdoliva
出处
期刊:International Geoscience and Remote Sensing Symposium
日期:2017-07-01
卷期号:: 886-889
被引量:25
标识
DOI:10.1109/igarss.2017.8127094
摘要
Ship detection is a fundamental task for SAR-based maritime surveillance. Besides providing high reliability, a good detector is required to be computationally light, in order to analyze huge areas in a reasonable time. We propose a fully convolutional neural network for ship detection in SAR images. Thanks to a relatively simple architecture, complexity remains low enough to allow for a single-stage approach, thus avoiding the possible errors of CFAR pre-screening. Experiments on a Sentinel-1 dataset prove the proposed CNN to be much more reliable than CFAR detection.
科研通智能强力驱动
Strongly Powered by AbleSci AI