Graph regularized nonnegative matrix factorization for temporal link prediction in dynamic networks

计算机科学 矩阵分解 非负矩阵分解 图形 链接(几何体) 正规化(语言学) 算法 时态数据库 因式分解 人工智能 理论计算机科学 数据挖掘 特征向量 计算机网络 量子力学 物理
作者
Xiaoke Ma,Penggang Sun,Yu Wang
出处
期刊:Physica D: Nonlinear Phenomena [Elsevier BV]
卷期号:496: 121-136 被引量:90
标识
DOI:10.1016/j.physa.2017.12.092
摘要

Many networks derived from society and nature are temporal and incomplete. The temporal link prediction problem in networks is to predict links at time T+1 based on a given temporal network from time 1 to T, which is essential to important applications. The current algorithms either predict the temporal links by collapsing the dynamic networks or collapsing features derived from each network, which are criticized for ignoring the connection among slices. to overcome the issue, we propose a novel graph regularized nonnegative matrix factorization algorithm (GrNMF) for the temporal link prediction problem without collapsing the dynamic networks. To obtain the feature for each network from 1 to t, GrNMF factorizes the matrix associated with networks by setting the rest networks as regularization, which provides a better way to characterize the topological information of temporal links. Then, the GrNMF algorithm collapses the feature matrices to predict temporal links. Compared with state-of-the-art methods, the proposed algorithm exhibits significantly improved accuracy by avoiding the collapse of temporal networks. Experimental results of a number of artificial and real temporal networks illustrate that the proposed method is not only more accurate but also more robust than state-of-the-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助伶俐雅柏采纳,获得10
1秒前
Hiker发布了新的文献求助10
3秒前
sun关注了科研通微信公众号
3秒前
xiixix发布了新的文献求助10
4秒前
默默完成签到,获得积分10
5秒前
无私一德发布了新的文献求助20
5秒前
6秒前
陈俊威完成签到,获得积分10
6秒前
yxli完成签到,获得积分10
8秒前
。。完成签到,获得积分10
8秒前
打打应助友好凌柏采纳,获得10
9秒前
自觉半凡完成签到,获得积分10
10秒前
Orange应助汪洋中的破船采纳,获得30
11秒前
12秒前
自觉半凡发布了新的文献求助10
12秒前
852应助makimaki采纳,获得10
13秒前
悟格发布了新的文献求助10
13秒前
兵马俑完成签到,获得积分20
13秒前
15秒前
18秒前
彭于晏应助可取采纳,获得10
18秒前
18秒前
DownTAT完成签到,获得积分10
19秒前
一一发布了新的文献求助20
19秒前
DownTAT发布了新的文献求助10
22秒前
23秒前
24秒前
hrzmlily完成签到,获得积分10
25秒前
25秒前
25秒前
丰丰发布了新的文献求助20
25秒前
xuan完成签到,获得积分20
25秒前
SYLH应助勤劳怜寒采纳,获得10
25秒前
26秒前
在水一方应助doctorbba采纳,获得10
26秒前
MM应助Yuna采纳,获得10
27秒前
27秒前
李天完成签到 ,获得积分20
27秒前
wu完成签到,获得积分10
28秒前
28秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797784
求助须知:如何正确求助?哪些是违规求助? 3343264
关于积分的说明 10315131
捐赠科研通 3060016
什么是DOI,文献DOI怎么找? 1679212
邀请新用户注册赠送积分活动 806436
科研通“疑难数据库(出版商)”最低求助积分说明 763150