快离子导体
固溶体
离子电导率
电导率
三元运算
固态
锂(药物)
材料科学
分析化学(期刊)
联络线
电解质
电阻率和电导率
结晶学
化学
物理化学
热力学
电极
物理
冶金
色谱法
量子力学
计算机科学
内分泌学
功率(物理)
电力系统
程序设计语言
医学
作者
Yulong Sun,Kota Suzuki,Satoshi Hori,Masaaki Hirayama,Ryoji Kanno
标识
DOI:10.1021/acs.chemmater.7b00886
摘要
Solid solutions of Sn–Si derivatives with an LGPS (Li10GeP2S12)-type structure are synthesized by a solid-state reaction in the Li3PS4–Li4SnS4–Li4SiS4 quasi-ternary system. The monophasic region of the LGPS-type structure deviates from the tie line between Li10SiP2S12 and Li10SnP2S12, and the composition of the solid solution is determined to be −0.1 ≤ δ ≤ 0.5 and 0 ≤ y ≤ 1.0 in Li10+δ[SnySi1–y]1+δP2−δS12 (0.50 ≤ x ≤ 0.7 and 0 ≤ y ≤ 1.0 in Li4–x[SnySi1–y]1–xPxS4). The solid solution is formed by a double substitution that changes the Sn/Si ratio and the M4+ (Sn4+ and Si4+)/P5+ ratio, which adjusts the sizes of the lithium conduction tunnels and the lithium concentration, and contributes to the optimal conductivity value. The highest ionic conductivity value of 1.1 × 10–2 S cm–1 is achieved for the composition of Li10.35[Sn0.27Si1.08]P1.65S12 (Li3.45[Sn0.09Si0.36]P0.55S4) at 298 K, which is close to the value for the original LGPS compound (1.2 × 10–2 S cm–1). The Ge-free solid electrolyte could be suitable for practical applications in all-solid-state batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI