薄板电阻
材料科学
透射率
氧化铟锡
透明导电膜
铟
纳米线
薄膜
光导率
光电子学
纳米技术
氧化物
电导率
电阻率和电导率
复合材料
图层(电子)
冶金
凝聚态物理
化学
物理
工程类
物理化学
电气工程
作者
Sukanta De,Thomas M. Higgins,Philip E. Lyons,Evelyn M. Doherty,Peter Niraj Nirmalraj,Werner J. Blau,John J. Boland,Jonathan N. Coleman
出处
期刊:ACS Nano
[American Chemical Society]
日期:2009-06-24
卷期号:3 (7): 1767-1774
被引量:1577
摘要
We have used aqueous dispersions of silver nanowires to prepare thin, flexible, transparent, conducting films. The nanowires are of length and diameter close to 6.5 μm and 85 nm, respectively. At low thickness, the films consist of networks but appear to become bulk-like for mean film thicknesses above ∼160 nm. These films can be very transparent with optical transmittance reaching as high as 92% for low thickness. The transmittance (550 nm) decreases with increasing thickness, consistent with an optical conductivity of 6472 S/m. The films are also very uniform; the transmittance varies spatially by typically <2%. The sheet resistance decreases with increasing thickness, falling below 1 Ω/◻ for thicknesses above 300 nm. The DC conductivity increases from 2 × 10(5) S/m for very thin films before saturating at 5 × 10(6) S/m for thicker films. Similarly, the ratio of DC to optical conductivity increases with increasing thickness from 25 for the thinnest films, saturating at ∼500 for thicknesses above ∼160 nm. We believe this is the highest conductivity ratio ever observed for nanostructured films and is matched only by doped metal oxide films. These nanowire films are electromechanically very robust, with all but the thinnest films showing no change in sheet resistance when flexed over >1000 cycles. Such results make these films ideal as replacements for indium tin oxide as transparent electrodes. We have prepared films with optical transmittance and sheet resistance of 85% and 13 Ω/◻, respectively. This is very close to that displayed by commercially available indium tin oxide.
科研通智能强力驱动
Strongly Powered by AbleSci AI