剪应力
生物反应器
计算流体力学
体积流量
脚手架
生物医学工程
磁导率
材料科学
入口
机械
化学
复合材料
机械工程
工程类
物理
有机化学
生物化学
膜
作者
Seokwon Pok,Dhananjay V. Dhane,Sundararajan V. Madihally
标识
DOI:10.1080/10255842.2011.641177
摘要
The objective of this study was to investigate a bioreactor suitable for human bladder regeneration. Simulations were performed using the computational fluid dynamic tools. The thickness of the bladder scaffold was 3 mm, similar to the human bladder, and overall hold-up volume within the spherical shape scaffold was 755 ml. All simulations were performed using (i) Brinkman equation on porous regions using the properties of 1% chitosan-1% gelatin structures, (ii) Michaelis-Menten type rate law nutrient consumption for smooth muscle cells (SMCs) and (iii) Mackie-Meares relationship for determining effective diffusivities. Steady state simulations were performed using flow rates from 0.5 to 5 ml/min. Two different inlet shapes: (i) straight entry at the centre (Design 1) and (ii) entry with an expansion (Design 2) were simulated to evaluate shear stress distribution. Also, mimicking bladder shape of two inlets (Design 3) was tested. Design 2 provided the uniform shear stress at the inlet and nutrient distribution, which was further investigated for the effect of scaffold locations within the reactor: (i) attached with a 3-mm open channel (Design 2-A), (ii) flow through with no open channel (Design 2-B) and (iii) porous structure suspended in the middle with 1.5-mm open channel on either side (Design 2-C). In Design 2-A and 2-C, fluid flow occurred by diffusion dominant mechanisms. Furthermore, the designed bioreactor is suitable for increased cell density of SMCs. These results showed that increasing the flow rate is necessary due to the decreased permeability at cell densities similar to the human bladder.
科研通智能强力驱动
Strongly Powered by AbleSci AI