生物
胚胎干细胞
突变体
表型
细胞凋亡
基因
细胞生物学
细胞培养
野生型
基因亚型
转基因
干细胞
分子生物学
遗传学
作者
Há Thi Nguyen,Mieke Geens,Afroditi Mertzanidou,Kurt Jacobs,Carlo Heirman,Karine Breckpot,Claudia Spits
标识
DOI:10.1093/molehr/gat077
摘要
Gain of 20q11.21 is a chromosomal abnormality that is recurrently found in human pluripotent stem cells and cancers, strongly suggesting that this mutation confers a proliferative or survival advantage to these cells. In this work we studied three human embryonic stem cell (hESC) lines that acquired a gain of 20q11.21 during in vitro culture. The study of the mRNA gene expression levels of the loci located in the common region of duplication showed that HM13, ID1, BCL2L1, KIF3B and the immature form of the micro-RNA miR-1825 were up-regulated in mutant cells. ID1 and BCL2L1 were further studied as potential drivers of the phenotype of hESC with a 20q11.21 gain. We found no increase in the protein levels of ID1, nor the downstream effects expected from over-expression of this gene. On the other hand, hESC with a gain of 20q11.21 had on average a 3-fold increase of Bcl-xL (the anti-apoptotic isoform of BCL2L1) protein levels. The mutant hESC underwent 2- to 3-fold less apoptosis upon loss of cell-to-cell contact and were ∼2-fold more efficient in forming colonies from a single cell. The key role of BCL2L1 in this mutation was further confirmed by transgenic over-expression of BCL2L1 in the wild-type cells, leading to apoptosis-resistant cells, and BCL2L1-knock-down in the mutant hESC, resulting in a restoration of the wild-type phenotype. This resistance to apoptosis supposes a significant advantage for the mutant cells, explaining the high frequency of gains of 20q11.21 in human pluripotent stem cells.
科研通智能强力驱动
Strongly Powered by AbleSci AI