Transforming medical imaging with Transformers? A comparative review of key properties, current progresses, and future perspectives

计算机科学 人工智能 钥匙(锁) 电流(流体) 数据科学 工程类 电气工程 计算机安全
作者
Jun Li,Junyu Chen,Yucheng Tang,Ce Wang,Bennett A. Landman,S. Kevin Zhou
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:85: 102762-102762 被引量:168
标识
DOI:10.1016/j.media.2023.102762
摘要

Transformer, one of the latest technological advances of deep learning, has gained prevalence in natural language processing or computer vision. Since medical imaging bear some resemblance to computer vision, it is natural to inquire about the status quo of Transformers in medical imaging and ask the question: can the Transformer models transform medical imaging? In this paper, we attempt to make a response to the inquiry. After a brief introduction of the fundamentals of Transformers, especially in comparison with convolutional neural networks (CNNs), and highlighting key defining properties that characterize the Transformers, we offer a comprehensive review of the state-of-the-art Transformer-based approaches for medical imaging and exhibit current research progresses made in the areas of medical image segmentation, recognition, detection, registration, reconstruction, enhancement, etc. In particular, what distinguishes our review lies in its organization based on the Transformer’s key defining properties, which are mostly derived from comparing the Transformer and CNN, and its type of architecture, which specifies the manner in which the Transformer and CNN are combined, all helping the readers to best understand the rationale behind the reviewed approaches. We conclude with discussions of future perspectives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
orixero应助专注的语堂采纳,获得10
刚刚
3秒前
3秒前
杨惠子发布了新的文献求助10
3秒前
田様应助啦啦啦采纳,获得10
4秒前
生椰拿铁关注了科研通微信公众号
4秒前
MWSURE完成签到,获得积分10
4秒前
4秒前
6秒前
6秒前
852应助erdongsir采纳,获得10
6秒前
掉头发的小白完成签到,获得积分10
8秒前
Yue发布了新的文献求助10
8秒前
小林完成签到 ,获得积分10
10秒前
4归0发布了新的文献求助10
10秒前
NSNSNA发布了新的文献求助50
10秒前
10秒前
胡新语完成签到,获得积分20
11秒前
兰兰兰完成签到,获得积分20
11秒前
13秒前
14秒前
周晏平完成签到,获得积分10
14秒前
微笑的冰烟应助哦哦采纳,获得10
15秒前
15秒前
RNAPW完成签到,获得积分10
17秒前
Kevin Huang发布了新的文献求助10
17秒前
Kobe完成签到,获得积分10
18秒前
三三完成签到,获得积分10
18秒前
bkagyin应助hyc采纳,获得10
18秒前
林圆圆发布了新的文献求助1000
19秒前
19秒前
dhlswpu发布了新的文献求助10
20秒前
充电宝应助勤劳的小牛蛙采纳,获得10
20秒前
傲娇的翠容完成签到,获得积分10
21秒前
SYLH应助高贵的白猫采纳,获得10
21秒前
有思想发布了新的文献求助10
22秒前
22秒前
23秒前
24秒前
高分求助中
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders (2025, 4th edition) 800
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Capitalism and Its Critics: A History: From the Industrial Revolution to AI 200
The Triumph of Economic Freedom: Debunking the Seven Myths of American Capitalism 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3832915
求助须知:如何正确求助?哪些是违规求助? 3375336
关于积分的说明 10488703
捐赠科研通 3094953
什么是DOI,文献DOI怎么找? 1704149
邀请新用户注册赠送积分活动 819814
科研通“疑难数据库(出版商)”最低求助积分说明 771661