清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Self-FuseNet: Data Free Unsupervised Remote Sensing Image Super-Resolution

计算机科学 图像分辨率 遥感 计算机视觉 人工智能 图像(数学) 地质学
作者
Divya Mishra,Ofer Hadar
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:16: 1710-1727 被引量:18
标识
DOI:10.1109/jstars.2023.3239758
摘要

Real-world degradations deviate from ideal degradations, as most deep learning-based scenarios involve the ideal synthesis of low-resolution (LR) counterpart images by popularly used bicubic interpolation. Moreover, supervised learning approaches rely on many high-resolution (HR) and LR image pairings to reconstruct missing information based on their association, developed by complex long hours of deep neural network training. Additionally, the trained model's generalizability on various image datasets with various distributions is not guaranteed. To overcome this challenge, we proposed our novel Self-FuseNet, particularly for extremely poor-resolution satellite images. Also, the network exhibits strong generalization performance on additional datasets (both "ideal" and "nonideal" scenarios). The network is especially for those image datasets suffering from the following two significant limitations: 1) nonavailability of ground truth HR images; 2) limitation of a large count of the unpaired dataset for deep neural network training. The benefit of the proposed model is threefold: 1) it does not require any significant extensive training data, either paired or unpaired but only a single LR image without prior knowledge of its distribution; 2) it is a simple and effective model for super-resolving very poor-resolution images, saving computational resources and time; 3) using UNet, the processing of data are accelerated by the network's wide skip connections, allowing image reconstruction with fewer parameters. Rather than using an inverse approach, as common in most deep learning scenarios, we introduced a forward approach to super-resolve exceptionally LR remote sensing images. This demonstrates its supremacy over recently proposed state-of-the-art methods for unsupervised single real-world image blind super-resolution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
18秒前
icoo发布了新的文献求助10
21秒前
Akim应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
NexusExplorer应助icoo采纳,获得10
1分钟前
小鱼女侠完成签到 ,获得积分10
1分钟前
1分钟前
拾忆发布了新的文献求助10
1分钟前
Ttimer完成签到,获得积分10
1分钟前
思源应助拾忆采纳,获得10
1分钟前
nick完成签到,获得积分10
1分钟前
坚定的苑睐完成签到 ,获得积分10
1分钟前
大医仁心完成签到 ,获得积分10
1分钟前
小二郎应助123Y采纳,获得10
2分钟前
2分钟前
2分钟前
大陆发布了新的文献求助10
2分钟前
2分钟前
icoo发布了新的文献求助10
2分钟前
123Y发布了新的文献求助10
2分钟前
123Y完成签到,获得积分10
2分钟前
斯文败类应助icoo采纳,获得10
2分钟前
mkeale发布了新的文献求助10
2分钟前
3分钟前
万能图书馆应助mkeale采纳,获得10
3分钟前
999完成签到 ,获得积分10
3分钟前
华仔应助mkeale采纳,获得10
3分钟前
两个榴莲完成签到,获得积分0
3分钟前
3分钟前
mkeale发布了新的文献求助10
3分钟前
常有李完成签到,获得积分10
3分钟前
波里舞完成签到 ,获得积分10
4分钟前
4分钟前
mkeale发布了新的文献求助10
4分钟前
4分钟前
Selena发布了新的文献求助10
4分钟前
YiXianCoA完成签到 ,获得积分10
4分钟前
斯文败类应助Selena采纳,获得10
4分钟前
mkeale完成签到,获得积分10
4分钟前
潘小嘎完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Bone Marrow Immunohistochemistry 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5628431
求助须知:如何正确求助?哪些是违规求助? 4717012
关于积分的说明 14964283
捐赠科研通 4786196
什么是DOI,文献DOI怎么找? 2555682
邀请新用户注册赠送积分活动 1516911
关于科研通互助平台的介绍 1477507