Real-time tracking and counting of grape clusters in the field based on channel pruning with YOLOv5s

修剪 领域(数学) 管道(软件) 分类 人工智能 频道(广播) 计算机科学 计算机视觉 数学 模式识别(心理学) 生物 情报检索 计算机网络 纯数学 农学 程序设计语言
作者
Lei Shen,Jinya Su,Runtian He,Lijie Song,Rong Huang,Yulin Fang,Yuyang Song,Baofeng Su
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:206: 107662-107662 被引量:52
标识
DOI:10.1016/j.compag.2023.107662
摘要

Accurate fruit counting helps grape wine industry make better logistics and decisions before harvest, and therefore produce higher quality wine. In view of poor real-time performance of the existing fruit tracking and counting methods, and a lack of effective counting methods for cluster-like fruits due to their huge shape variabilities. In this study, an end-to-end lightweight counting pipeline is developed to automate the processing of video data for real-time tracking and counting of grape clusters in field conditions. First, based on channel pruning algorithm, a more lightweight YOLOv5s cluster detection model is obtained, where number of model parameters, model size and floating-point operations (FLOPs) are reduced by 79 %, 76 %, and 58 %, respectively, and the pruned model size is only 3.4 MB. Secondly, the soft non-maximum suppression is introduced in prediction stage to improve detection performance for clusters with overlapping grapes. Test results show that mAP reaches 82.3 % and average inference time is 6.1 ms per image, which effectively reduces model parameters and complexity while ensuring detection accuracy. Finally, online multiple object tracking of clusters is implemented by integrating the detection results and SORT algorithm, where two counting modes are set by introducing counting lines. Test results on 8 videos indicated that the average counting accuracy of the proposed method reached 84.9 %, correlation coefficient with manual counting reached 0.9905, and speed of video processing reached up to 50.4 frames per second (FPS), meeting field real-time requirements. This study provides a timely technical reference for the development of orchard robots to achieve real-time automated yield estimation and accurate crop management decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
董晴发布了新的文献求助10
1秒前
坦率的寻凝完成签到,获得积分10
1秒前
充电宝应助可靠的战斗机采纳,获得10
2秒前
木悠完成签到,获得积分10
2秒前
养鱼达人完成签到 ,获得积分10
3秒前
英勇的梨愁完成签到,获得积分20
3秒前
秀丽的莹完成签到 ,获得积分10
3秒前
Kindy完成签到,获得积分10
6秒前
Yao_U202310332完成签到,获得积分10
6秒前
xuehz发布了新的文献求助80
6秒前
浮游应助李诚信采纳,获得10
6秒前
lucas完成签到,获得积分10
6秒前
来弄完成签到,获得积分10
6秒前
李琛完成签到,获得积分10
6秒前
swaggy完成签到 ,获得积分10
7秒前
Hello应助东晓采纳,获得10
7秒前
XL完成签到,获得积分10
7秒前
innocent完成签到,获得积分10
8秒前
二十八完成签到 ,获得积分10
8秒前
丸丸完成签到,获得积分10
9秒前
cjmlslddjd完成签到,获得积分10
9秒前
9秒前
gyhmm完成签到,获得积分10
9秒前
lyu完成签到,获得积分10
9秒前
我是老大应助乐观依云采纳,获得10
9秒前
尹哲完成签到,获得积分10
10秒前
10秒前
所所应助jing采纳,获得10
10秒前
鬼笔环肽应助专注的开山采纳,获得10
10秒前
丘比特应助李琛采纳,获得10
10秒前
灵巧筮完成签到,获得积分20
11秒前
派出所110完成签到 ,获得积分10
12秒前
浮游应助小小蚂蚁采纳,获得10
12秒前
12秒前
娃haha完成签到,获得积分10
12秒前
HRB完成签到,获得积分10
12秒前
11111112222完成签到,获得积分10
13秒前
李保龙完成签到 ,获得积分10
14秒前
liuhao完成签到,获得积分20
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4935966
求助须知:如何正确求助?哪些是违规求助? 4203658
关于积分的说明 13060523
捐赠科研通 3980977
什么是DOI,文献DOI怎么找? 2179861
邀请新用户注册赠送积分活动 1195809
关于科研通互助平台的介绍 1107713