ABSTRACT Melasma is a recurrent and treatment‐resistant hyperpigmentation disorder characterized by a complex and multifactorial pathogenesis. However, the lack of a stable and reliable animal model has hindered systematic investigations into its onset and progression. In this study, we established a melasma‐like model in C57BL/6J mice by combining broadband UVB irradiation, intramuscular progesterone administration, and induced emotional stress. The affected skin areas exhibited irregular, brown hyperpigmented patches. Histopathological analysis revealed an accumulation of melanin granules in the epidermis and superficial dermis, elevated levels of tyrosinase (TYR) in both skin and plasma, systemic oxidative stress imbalance, and reduced autophagic activity in the lesional skin. Furthermore, this model displayed distinct differences from a UV‐induced post‐inflammatory hyperpigmentation (PIH) model. Notably, the melasma‐like mice responded to tranexamic acid treatment in a manner that closely resembled clinical outcomes observed in human patients. Collectively, these findings establish a stable, reproducible, and clinically relevant mouse model of melasma, providing a valuable platform for future research into its pathogenesis and treatment.