已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Accuracy of AI-Based Algorithms in Pulmonary Embolism Detection on Computed Tomographic Pulmonary Angiography: An Updated Systematic Review and Meta-analysis

计算机断层血管造影 肺栓塞 计算机断层摄影 肺动脉造影 算法 放射科 医学 血管造影 计算机科学 人工智能 内科学 计算机断层摄影术
作者
Seyed Ali Nabipoorashrafi,Arsalan Seyedi,Razman Arabzadeh Bahri,Amirhossein Yadegar,Mostafa Shomalzadeh,Fatemeh Mohammadi,Samira Amin Afshari,Negar Firoozeh,Navida Noroozzadeh,Fatemeh Khosravi,Sanaz Asadian,Hamid Chalian
标识
DOI:10.1007/s10278-025-01645-w
摘要

Several artificial intelligence (AI) algorithms have been designed for detection of pulmonary embolism (PE) using computed tomographic pulmonary angiography (CTPA). Due to the rapid development of this field and the lack of an updated meta-analysis, we aimed to systematically review the available literature about the accuracy of AI-based algorithms to diagnose PE via CTPA. We searched EMBASE, PubMed, Web of Science, and Cochrane for studies assessing the accuracy of AI-based algorithms. Studies that reported sensitivity and specificity were included. The R software was used for univariate meta-analysis and drawing summary receiver operating characteristic (sROC) curves based on bivariate analysis. To explore the source of heterogeneity, sub-group analysis was performed (PROSPERO: CRD42024543107). A total of 1722 articles were found, and after removing duplicated records, 1185 were screened. Twenty studies with 26 AI models/population met inclusion criteria, encompassing 11,950 participants. Univariate meta-analysis showed a pooled sensitivity of 91.5% (95% CI 85.5-95.2) and specificity of 84.3 (95% CI 74.9-90.6) for PE detection. Additionally, in the bivariate sROC, the pooled area under the curved (AUC) was 0.923 out of 1, indicating a very high accuracy of AI algorithms in the detection of PE. Also, subgroup meta-analysis showed geographical area as a potential source of heterogeneity where the I2 for sensitivity and specificity in the Asian article subgroup were 60% and 6.9%, respectively. Findings highlight the promising role of AI in accurately diagnosing PE while also emphasizing the need for further research to address regional variations and improve generalizability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
尔信发布了新的文献求助10
刚刚
怅望千秋完成签到 ,获得积分10
4秒前
轻松的芯完成签到 ,获得积分0
5秒前
6秒前
6秒前
lph完成签到 ,获得积分10
6秒前
赘婿应助科研兵采纳,获得10
8秒前
Dean051204完成签到,获得积分10
8秒前
酷波er应助LDL采纳,获得10
9秒前
肉肉肉发布了新的文献求助10
9秒前
熊大鹅发布了新的文献求助10
9秒前
11秒前
11秒前
Criminology34举报心灵尔安求助涉嫌违规
12秒前
13秒前
科目三应助美好斓采纳,获得30
17秒前
LDL完成签到,获得积分10
17秒前
18秒前
19秒前
IV完成签到 ,获得积分10
19秒前
润柏海完成签到 ,获得积分10
20秒前
wxx771510625完成签到 ,获得积分10
21秒前
21秒前
da发布了新的文献求助10
22秒前
jinsijia发布了新的文献求助10
24秒前
LDL发布了新的文献求助10
24秒前
24秒前
25秒前
优秀傲之发布了新的文献求助10
26秒前
hhh完成签到,获得积分10
26秒前
道格拉斯的小妖完成签到,获得积分10
26秒前
yby发布了新的文献求助10
28秒前
lulu完成签到 ,获得积分10
29秒前
美好斓发布了新的文献求助30
29秒前
YYY完成签到 ,获得积分10
30秒前
30秒前
32秒前
肉肉肉完成签到,获得积分10
32秒前
yishang发布了新的文献求助10
33秒前
酷波er应助嗒嗒小医生采纳,获得20
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663865
求助须知:如何正确求助?哪些是违规求助? 4853850
关于积分的说明 15106158
捐赠科研通 4822179
什么是DOI,文献DOI怎么找? 2581270
邀请新用户注册赠送积分活动 1535484
关于科研通互助平台的介绍 1493742