Generation of Fundus Fluorescein Angiography Videos for Health Care Data Sharing

医学 人工智能 可视化 召回 眼底摄影 计算机科学 荧光血管造影 计算机视觉 眼科 视网膜 语言学 哲学
作者
Xinyuan Wu,Lili Wang,Ruoyu Chen,Bowen Liu,Weiyi Zhang,Xi Yang,Yifan Feng,Mingguang He,Danli Shi
出处
期刊:JAMA Ophthalmology [American Medical Association]
被引量:4
标识
DOI:10.1001/jamaophthalmol.2025.1419
摘要

Importance Medical data sharing faces strict restrictions. Text-to-video generation shows potential for creating realistic medical data while preserving privacy, offering a solution for cross-center data sharing and medical education. Objective To develop and evaluate a text-to-video generative artificial intelligence (AI)–driven model that converts the text of reports into dynamic fundus fluorescein angiography (FFA) videos, enabling visualization of retinal vascular and structural abnormalities. Design, Setting, and Participants This study retrospectively collected anonymized FFA data from a tertiary hospital in China. The dataset included both the medical records and FFA examinations of patients assessed between November 2016 and December 2019. A text-to-video model was developed and evaluated. The AI-driven model integrated the wavelet-flow variational autoencoder and the diffusion transformer. Main Outcomes and Measures The AI-driven model’s performance was assessed through objective metrics (Fréchet video distance, learned perceptual image patch similarity score, and visual question answering score [VQAScore]). The domain-specific evaluation for the generated FFA videos was measured by the bidirectional encoder representations from transformers score (BERTScore). Image retrieval was evaluated using a Recall@K score. Each video was rated for quality by 3 ophthalmologists on a scale of 1 (excellent) to 5 (very poor). Results A total of 3625 FFA videos were included (2851 videos [78.6%] for training, 387 videos [10.7%] for validation, and 387 videos [10.7%] for testing). The AI-generated FFA videos demonstrated retinal abnormalities from the input text (Fréchet video distance of 2273, a mean learned perceptual image patch similarity score of 0.48 [SD, 0.04], and a mean VQAScore of 0.61 [SD, 0.08]). The domain-specific evaluations showed alignment between the generated videos and textual prompts (mean BERTScore, 0.35 [SD, 0.09]). The Recall@K scores were 0.02 for K = 5, 0.04 for K = 10, and 0.16 for K = 50, yielding a mean score of 0.073, reflecting disparities between AI-generated and real clinical videos and demonstrating privacy-preserving effectiveness. For assessment of visual quality of the FFA videos by the 3 ophthalmologists, the mean score was 1.57 (SD, 0.44). Conclusions and Relevance This study demonstrated that an AI-driven text-to-video model generated FFA videos from textual descriptions, potentially improving visualization for clinical and educational purposes. The privacy-preserving nature of the model may address key challenges in data sharing while trying to ensure compliance with confidentiality standards.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
feizhuliu发布了新的文献求助10
1秒前
1秒前
王泽轩关注了科研通微信公众号
2秒前
桃子发布了新的文献求助30
3秒前
Freya发布了新的文献求助10
3秒前
Hello应助xyu采纳,获得10
4秒前
4秒前
4秒前
5秒前
667完成签到,获得积分10
6秒前
6秒前
杨贵严发布了新的文献求助10
8秒前
煎蛋发布了新的文献求助10
8秒前
8秒前
tongke发布了新的文献求助10
9秒前
DL发布了新的文献求助10
10秒前
10秒前
Orange应助鹂鹂复霖霖采纳,获得10
10秒前
情怀应助dd采纳,获得10
10秒前
胡胡发布了新的文献求助10
11秒前
苏州小北发布了新的文献求助10
12秒前
Ava应助Freya采纳,获得10
12秒前
zyyyy完成签到,获得积分10
12秒前
12秒前
汉堡包应助哈伊呀采纳,获得30
12秒前
Nsync完成签到,获得积分10
14秒前
2213sss完成签到,获得积分10
15秒前
16秒前
20秒前
852应助HHH采纳,获得10
21秒前
Orange应助luo采纳,获得10
21秒前
XStars10发布了新的文献求助10
21秒前
小二郎应助即刻开摆采纳,获得10
22秒前
打打应助huyz采纳,获得10
22秒前
Nsync发布了新的文献求助10
22秒前
吴逸彪发布了新的文献求助10
22秒前
23秒前
25秒前
Owen应助1282941496采纳,获得10
25秒前
qaa2274278941发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4726855
求助须知:如何正确求助?哪些是违规求助? 4083863
关于积分的说明 12630316
捐赠科研通 3790325
什么是DOI,文献DOI怎么找? 2093232
邀请新用户注册赠送积分活动 1119016
科研通“疑难数据库(出版商)”最低求助积分说明 995377