Off‐the‐Shelf Large Language Models for Guiding Pharmacoepidemiological Study Design

一致性 术语 协变量 药物流行病学 临床研究设计 医学 编码(社会科学) 相关性(法律) 现行程序术语 计算机科学 数据挖掘 统计 自然语言处理 机器学习 病理 临床试验 语言学 数学 外科 内科学 药理学 法学 哲学 药方 政治学
作者
Gerard Ompad,Keele Wurst,Darmendra Ramcharran,Anders Hviid,Andrew Bate,Maurizio Sessa
出处
期刊:Clinical Pharmacology & Therapeutics [Wiley]
标识
DOI:10.1002/cpt.70039
摘要

This study aimed to assess the ability of two off‐the‐shelf large language models, ChatGPT and Gemini, to support the design of pharmacoepidemiological studies. We assessed 48 study protocols of pharmacoepidemiological studies published between 2018 and 2024, covering various study types, including disease epidemiology, drug utilization, safety, and effectiveness. The coherence (i.e., “Is the response coherent and well‐formed, or is it difficult to understand?”) and relevance (i.e., “Is the response relevant and informative, or is it lacking in substance?”) of the large language models' responses were evaluated by human experts across seven key study design components. Coding accuracy was assessed. Both large language models demonstrated high coherence, with over 90% of study components rated as “Strongly agree” by experts for most categories. ChatGPT achieved the highest coherence for “Index date” (97.9%) and “Study design” (95.8%). Gemini excelled in “Study outcome” (93.9%) and “Study exposure” (95.9%). Relevance, however, was more variable, with ChatGPT aligning with expert recommendations in over 90% of cases for “Index date” and “Study design” but showing lower agreement for covariates (65%) and follow‐up (70%). Coding agreement percentages reveal varying levels of concordance, with the Anatomical Therapeutic Chemical classification system coding system demonstrating the highest agreement at 50% with experts. In contrast, the Current Procedural Terminology and International Classification of Diseases systems showed agreements of 22.2% and 20%, respectively. While ChatGPT and Gemini show promise in certain tasks supporting pharmacoepidemiological study design, their limitations in relevance and coding accuracy highlight the need for critical oversight by domain experts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助狂野静曼采纳,获得10
刚刚
anling发布了新的文献求助10
刚刚
家家发布了新的文献求助10
1秒前
沉静尔白发布了新的文献求助10
1秒前
2秒前
香蕉觅云应助wan12138采纳,获得10
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
春深半夏完成签到,获得积分20
4秒前
4秒前
6秒前
吕敬瑶完成签到,获得积分10
7秒前
7秒前
春深半夏发布了新的文献求助10
8秒前
8秒前
善学以致用应助zhangfuchao采纳,获得10
9秒前
小赵发布了新的文献求助10
10秒前
在水一方应助欣喜的以丹采纳,获得10
10秒前
星辰大海应助小凯采纳,获得10
10秒前
科研通AI6应助毛竹采纳,获得10
11秒前
轻松元珊完成签到,获得积分20
12秒前
maxinyu完成签到 ,获得积分10
13秒前
renpp发布了新的文献求助10
13秒前
郭枫完成签到,获得积分10
15秒前
CipherSage应助anling采纳,获得10
15秒前
17秒前
kk完成签到,获得积分10
18秒前
zora完成签到,获得积分10
18秒前
18秒前
田様应助cat采纳,获得10
19秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
19秒前
英姑应助科研通管家采纳,获得10
19秒前
FashionBoy应助科研通管家采纳,获得10
19秒前
19秒前
alchol应助科研通管家采纳,获得80
19秒前
19秒前
woocc完成签到,获得积分20
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
创造互补优势国外有人/无人协同解析 300
The Great Psychology Delusion 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4648124
求助须知:如何正确求助?哪些是违规求助? 4037055
关于积分的说明 12486894
捐赠科研通 3726648
什么是DOI,文献DOI怎么找? 2056904
邀请新用户注册赠送积分活动 1087799
科研通“疑难数据库(出版商)”最低求助积分说明 969145