Deep Learning-Driven Discovery of Novel Antimicrobial Peptides from Large-Scale Protist Genomes and Experimental Characterization

原生生物 计算生物学 基因组 药物发现 抗菌剂 比例(比率) 生物 微生物学 生物信息学 遗传学 基因 地理 地图学
作者
Wenhao Li,Guoqiang Zhu,M. Zubair,Cui Guo,Lin Zhang,Peicheng Lu,Yongmin Yan,Ying Chu,Haiyan Zhang,Guomin Han
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:65 (19): 9962-9973
标识
DOI:10.1021/acs.jcim.5c01196
摘要

The escalating issue of antibiotic resistance has created an urgent global demand within the biomedical field for the discovery of novel antimicrobial molecules as alternatives to traditional antibiotics. Previous studies have reported the identification of potential candidate antimicrobial peptides (AMPs) from extensive bacterial genomes by using deep learning. However, protists, as unique microorganisms capable of thriving in complex ecological environments, represent a largely untapped reservoir of unknown AMP resources that are awaiting systematic exploration. In this study, we harnessed deep learning techniques to identify novel antimicrobial peptides from large-scale protist genomes. Our results indicate that from 2120 protist genome data sets, through a multistage screening process involving sequence redundancy, the application of existing models (C_AMPs_Ptrdict, AMPEP, and AMPidentifier), and the integration of our optimized BERT and CNN models, we ultimately identified 3133 novel candidate AMPs from approximately 6.6 billion sequences. Experimental validation of 18 synthesized candidate peptides demonstrated inhibitory activity against at least one tested bacterial species. This high validation rate, where all 18 tested peptides exhibited inhibitory activity against at least one bacterial species, underscores the exceptional accuracy of the multimodel comprehensive identification approach for obtaining AMPs with antibacterial capability. Among the synthesized peptides, AMP_N2 and AMP_N3 exhibited strong antimicrobial activity in liquid culture while maintaining hemolysis rates below 3%. Our findings indicate that protists are a significant source of novel antimicrobial peptides and that deep learning techniques can be efficiently employed for AMP discovery. To our knowledge, this study represents the first large-scale exploration of novel antimicrobial peptides from over 2000 protist genomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助Huang采纳,获得10
刚刚
1秒前
1秒前
Pawn完成签到,获得积分10
2秒前
木叶研发布了新的文献求助10
2秒前
静哥完成签到,获得积分10
3秒前
3秒前
敏家发布了新的文献求助10
5秒前
5秒前
深情安青应助scifff采纳,获得10
5秒前
7秒前
柒柒止步完成签到 ,获得积分10
7秒前
碧蓝雨安发布了新的文献求助10
7秒前
8秒前
静哥发布了新的文献求助10
8秒前
FashionBoy应助标致小翠采纳,获得10
10秒前
ieee拯救者应助jack采纳,获得10
11秒前
nancylan应助木叶研采纳,获得10
12秒前
喝喂辉完成签到,获得积分10
13秒前
14秒前
土豆酱完成签到 ,获得积分10
14秒前
hh完成签到,获得积分10
16秒前
cytomito完成签到,获得积分10
16秒前
HP发布了新的文献求助10
16秒前
17秒前
18秒前
爱读文献发布了新的文献求助10
18秒前
充电宝应助Isla采纳,获得10
19秒前
33完成签到,获得积分10
19秒前
20秒前
Huan发布了新的文献求助10
20秒前
dongtan完成签到 ,获得积分10
21秒前
21秒前
木木发布了新的文献求助10
23秒前
23秒前
天天快乐应助圆润润呐采纳,获得10
23秒前
标致小翠发布了新的文献求助10
24秒前
懒羊羊发布了新的文献求助10
25秒前
Akim应助小鱼采纳,获得10
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5263389
求助须知:如何正确求助?哪些是违规求助? 4423991
关于积分的说明 13771463
捐赠科研通 4298989
什么是DOI,文献DOI怎么找? 2358843
邀请新用户注册赠送积分活动 1355116
关于科研通互助平台的介绍 1316331