Deep Learning-Driven Discovery of Novel Antimicrobial Peptides from Large-Scale Protist Genomes and Experimental Characterization

原生生物 计算生物学 基因组 药物发现 抗菌剂 比例(比率) 生物 微生物学 生物信息学 遗传学 基因 地理 地图学
作者
Wenhao Li,Guoqiang Zhu,M. Zubair,Cui Guo,Lin Zhang,Peicheng Lu,Yongmin Yan,Ying Chu,Haiyan Zhang,Guomin Han
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.5c01196
摘要

The escalating issue of antibiotic resistance has created an urgent global demand within the biomedical field for the discovery of novel antimicrobial molecules as alternatives to traditional antibiotics. Previous studies have reported the identification of potential candidate antimicrobial peptides (AMPs) from extensive bacterial genomes by using deep learning. However, protists, as unique microorganisms capable of thriving in complex ecological environments, represent a largely untapped reservoir of unknown AMP resources that are awaiting systematic exploration. In this study, we harnessed deep learning techniques to identify novel antimicrobial peptides from large-scale protist genomes. Our results indicate that from 2120 protist genome data sets, through a multistage screening process involving sequence redundancy, the application of existing models (C_AMPs_Ptrdict, AMPEP, and AMPidentifier), and the integration of our optimized BERT and CNN models, we ultimately identified 3133 novel candidate AMPs from approximately 6.6 billion sequences. Experimental validation of 18 synthesized candidate peptides demonstrated inhibitory activity against at least one tested bacterial species. This high validation rate, where all 18 tested peptides exhibited inhibitory activity against at least one bacterial species, underscores the exceptional accuracy of the multimodel comprehensive identification approach for obtaining AMPs with antibacterial capability. Among the synthesized peptides, AMP_N2 and AMP_N3 exhibited strong antimicrobial activity in liquid culture while maintaining hemolysis rates below 3%. Our findings indicate that protists are a significant source of novel antimicrobial peptides and that deep learning techniques can be efficiently employed for AMP discovery. To our knowledge, this study represents the first large-scale exploration of novel antimicrobial peptides from over 2000 protist genomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cruise发布了新的文献求助10
刚刚
iveuplife完成签到,获得积分20
1秒前
2233发布了新的文献求助10
1秒前
疯狂发布了新的文献求助10
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
马户的崛起完成签到,获得积分10
2秒前
Aourp完成签到 ,获得积分10
3秒前
释金松发布了新的文献求助20
3秒前
史蓓蓓发布了新的文献求助10
3秒前
学习发布了新的文献求助30
4秒前
4秒前
4秒前
5秒前
5秒前
6秒前
huhantong发布了新的文献求助10
6秒前
123zyuyu完成签到,获得积分10
6秒前
zzxx完成签到,获得积分10
6秒前
7秒前
稳重的黑猫应助房天川采纳,获得20
8秒前
xiaoxiao晓完成签到,获得积分10
8秒前
陈旧发布了新的文献求助10
9秒前
9秒前
10秒前
阿州完成签到,获得积分10
10秒前
11秒前
11秒前
wtt0109完成签到,获得积分10
11秒前
lllllkkkj完成签到,获得积分10
11秒前
11秒前
11秒前
学术大佬发布了新的文献求助10
11秒前
复杂惜霜发布了新的文献求助10
11秒前
小蘑菇应助浮浮世世采纳,获得10
12秒前
缥缈的妙竹完成签到,获得积分20
12秒前
LDL完成签到,获得积分10
13秒前
seven完成签到,获得积分10
13秒前
14秒前
iveuplife发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 510
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4691797
求助须知:如何正确求助?哪些是违规求助? 4063277
关于积分的说明 12563488
捐赠科研通 3761314
什么是DOI,文献DOI怎么找? 2077320
邀请新用户注册赠送积分活动 1105841
科研通“疑难数据库(出版商)”最低求助积分说明 984428