清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Artificial Intelligence-Enabled Staging Classification of Pressure Injuries

作者
Ayşe Silanur Demir Üçtepe,Ahmet Emin Battal,Cevat Güleç,Eren Ergün,Ahmet Bakcaci,Ayişe Karadağ,Çiğdem Gündüz Demir Üçtepe,Ayişe Karadağ
出处
期刊:Advances in Skin & Wound Care [Ovid Technologies (Wolters Kluwer)]
卷期号:38 (9): 480-486
标识
DOI:10.1097/asw.0000000000000352
摘要

OBJECTIVE: This study aimed to design an artificial intelligence (AI) tool that can more accurately and objectively identify different stages of pressure injuries (PIs). METHODS: In this study, the authors proposed using AI and computer vision to classify PI images by stage. To this end, the authors implemented a classification network and trained it on a set of PIs images labeled with their stages. This dataset included images from 2 different sources, namely the publicly available Pressure Injury Image Dataset (1091 images), and a private dataset from Koç University Wound Research Laboratory (AY-Lab) (572 images). All images were resized to 224×224 and normalized according to the ImageNet-1K dataset before model input. Various deep learning architectures, including ResNet18, ResNet18-Transformer Encoder Hybrid Model, and DenseNet-121, were used for training and testing. Three-fold cross-validation was used to ensure more robust training and testing. Multiple configurations were tested for each model, and the best-performing configuration was identified. Grad-CAM was applied to visualize attention areas for further evaluation of the model results. RESULTS: After 3-fold cross-validation, ResNet18 outperformed all tested models, achieving an average accuracy of 76.92 ± 0.92% on the 4-class classification task. The model demonstrated the highest precision of 87.35 ± 5.54% for Stage 1 and the lowest precision of 64.72 ± 2.66% for Stage 3. CONCLUSIONS: The results of using the proposed computational approach for PI staging are promising. The AI model can automate PI stage classification, making it a valuable tool for clinic experts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助zhao123123采纳,获得10
6秒前
arniu2008完成签到,获得积分10
7秒前
打打应助Msure采纳,获得10
14秒前
xzy998发布了新的文献求助10
21秒前
ranj完成签到,获得积分10
26秒前
35秒前
无用的老董西完成签到 ,获得积分10
37秒前
sora98完成签到 ,获得积分10
53秒前
1分钟前
李健应助缓慢的煜祺采纳,获得30
1分钟前
湘崽丫完成签到 ,获得积分10
1分钟前
1分钟前
Msure发布了新的文献求助10
1分钟前
朴素的山蝶完成签到 ,获得积分10
1分钟前
Msure完成签到,获得积分10
1分钟前
赘婿应助科研通管家采纳,获得10
2分钟前
2分钟前
慕青应助kukudou2采纳,获得10
2分钟前
naki完成签到,获得积分10
2分钟前
alvin完成签到 ,获得积分10
2分钟前
回忆应助xzy998采纳,获得50
3分钟前
3分钟前
虚幻安容完成签到 ,获得积分10
3分钟前
小六子完成签到,获得积分10
3分钟前
回忆应助xzy998采纳,获得50
4分钟前
4分钟前
回忆应助xzy998采纳,获得50
4分钟前
4分钟前
科研通AI6应助科研通管家采纳,获得30
4分钟前
缓慢的煜祺完成签到,获得积分10
4分钟前
回忆应助xzy998采纳,获得50
4分钟前
4分钟前
SciGPT应助guan采纳,获得10
4分钟前
5分钟前
阿里应助高大又蓝采纳,获得30
5分钟前
5分钟前
5分钟前
guan发布了新的文献求助10
5分钟前
5分钟前
guan完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5635298
求助须知:如何正确求助?哪些是违规求助? 4735417
关于积分的说明 14989990
捐赠科研通 4793012
什么是DOI,文献DOI怎么找? 2560118
邀请新用户注册赠送积分活动 1520271
关于科研通互助平台的介绍 1480432