Evaluation of hydraulic fracturing using machine learning

支持向量机 计算机科学 随机森林 均方误差 人工神经网络 机器学习 人工智能 稳健性(进化) 数据挖掘 统计 数学 化学 基因 生物化学
作者
Ali Akbari‐Fakhrabadi,Ali Karami,Yousef Kazemzadeh,A.A. Ranjbar
出处
期刊:Scientific Reports [Springer Nature]
卷期号:15 (1): 26926-26926 被引量:3
标识
DOI:10.1038/s41598-025-12392-x
摘要

Abstract Hydraulic fracturing (HF) is a pivotal technique in the oil and gas industry, aimed at enhancing hydrocarbon recovery by increasing reservoir permeability through high-pressure fluid injection. Despite its effectiveness, traditional methods used to evaluate HF performance often struggle to capture the complex, nonlinear interactions among operational and geological parameters. This study presents a comprehensive machine learning (ML)-based framework to address this challenge by predicting HF efficiency using three widely used algorithms: Random Forest (RF), Support Vector Machine (SVM), and Neural Networks (NN). The novelty of this research lies in the combined application of advanced statistical characterization and comparative ML modeling over a large-scale dataset comprising 16,000 records. Key statistical metrics, including mean, median, variance, skewness, and quartiles, were used to explore data distribution and inform model training. Additionally, the study uniquely evaluates model robustness across varying train/test data ratios (from 0.1 to 0.9), providing deeper insights into algorithm performance stability. Among the tested models, RF outperformed others by achieving the highest coefficient of determination (R 2 = 0.9804), alongside the lowest Mean Absolute Deviation (MAD) and Root Mean Square Error (RMSE) for both training and testing phases. These results demonstrate RF’s capability in handling complex subsurface data with high accuracy and low computational cost. The proposed framework not only enhances predictive accuracy in HF evaluation but also serves as a practical tool for optimizing fracturing design and decision-making in field operations. This integrated approach represents a step forward in applying artificial intelligence for data-driven reservoir engineering and contributes to the advancement of intelligent hydraulic fracturing practices in heterogeneous and data-rich environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sxb10101应助科研通管家采纳,获得20
刚刚
Junning应助科研通管家采纳,获得80
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
所所应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
JamesPei应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得30
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
麻薯完成签到,获得积分10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
熬夜波比应助科研通管家采纳,获得10
2秒前
清爽的如波关注了科研通微信公众号
2秒前
Hello应助科研通管家采纳,获得10
2秒前
2秒前
3秒前
sara发布了新的文献求助10
3秒前
Owen应助科研通管家采纳,获得10
3秒前
3秒前
无算浮白发布了新的文献求助10
3秒前
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
JamesPei应助王意博采纳,获得10
3秒前
moon发布了新的文献求助10
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
刘五州发布了新的文献求助10
4秒前
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5680257
求助须知:如何正确求助?哪些是违规求助? 4997477
关于积分的说明 15172347
捐赠科研通 4840185
什么是DOI,文献DOI怎么找? 2593854
邀请新用户注册赠送积分活动 1546824
关于科研通互助平台的介绍 1504893