Deep Learning–Based Body Composition Analysis for Outcome Prediction in Relapsed/Refractory Diffuse Large B-Cell Lymphoma: Insights From the LOTIS-2 Trial

医学 逻辑回归 弥漫性大B细胞淋巴瘤 内科学 比例危险模型 队列 核医学 临床试验 肿瘤科 淋巴瘤
作者
Russ Kuker,Juan Pablo Alderuccio,Sunwoo Han,Mark K. Polar,Tracy E. Crane,Craig H. Moskowitz,Fei Yang
出处
期刊:JCO clinical cancer informatics [Lippincott Williams & Wilkins]
卷期号: (9)
标识
DOI:10.1200/cci-25-00051
摘要

PURPOSE The present study aimed to investigate the role of body composition as an independent image-derived biomarker for clinical outcome prediction in a clinical trial cohort of patients with relapsed or refractory (rel/ref) diffuse large B-cell lymphoma (DLBCL) treated with loncastuximab tesirine. MATERIALS AND METHODS The imaging cohort consisted of positron emission tomography/computed tomography scans of 140 patients with rel/ref DLBCL treated with loncastuximab tesirine in the LOTIS-2 (ClinicalTrials.gov identifier: NCT03589469 ) trial. Body composition analysis was conducted using both manual and deep learning–based segmentation of three primary tissue compartments—skeletal muscle (SM), subcutaneous fat (SF), and visceral fat (VF)—at the L3 level from baseline CT scans. From these segmented compartments, body composition ratio indices, including SM*/VF*, SF*/VF*, and SM*/(VF*+SF*), were derived. Pearson's correlation analysis was used to examine the agreement between manual and automated segmentation. Logistic regression analyses were used to assess the association between the derived indices and treatment response. Cox regression analyses were used to determine the effect of body composition indices on time-to-event outcomes. Body composition indices were considered as continuous and binary variables defined by cut points. The Kaplan-Meier method was used to estimate progression-free survival (PFS) and overall survival (OS). RESULTS The manual and automated SM*/VF* indices, as dichotomized, were significant predictors in univariable and multivariable logistic models for failure to achieve complete metabolic response. The manual SM*/VF* index as dichotomized was significantly associated with PFS, but not OS, in univariable and multivariable Cox models. CONCLUSION The pretreatment SM*/VF* body composition index shows promise as a biomarker for patients with rel/ref DLBCL undergoing treatment with loncastuximab tesirine. The proposed deep learning–based approach for body composition analysis demonstrated comparable performance to the manual process, presenting a more cost-effective alternative to conventional methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助文献来来来采纳,获得10
刚刚
Lxxxxx完成签到,获得积分10
刚刚
otenen发布了新的文献求助30
1秒前
1秒前
IU冰冰完成签到 ,获得积分10
2秒前
Andy完成签到 ,获得积分10
3秒前
小潘同学发布了新的文献求助10
4秒前
隐形曼青应助哼哼哈嘿采纳,获得10
4秒前
靓丽的发箍完成签到,获得积分10
4秒前
酷波er应助科研通管家采纳,获得10
5秒前
柏林寒冬应助科研通管家采纳,获得10
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
SpringMorning应助科研通管家采纳,获得10
5秒前
大个应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
默默若枫完成签到,获得积分10
8秒前
木头鱼完成签到,获得积分10
9秒前
今后应助yx采纳,获得10
10秒前
10秒前
zho发布了新的文献求助10
11秒前
11秒前
科目三应助二愣子采纳,获得10
11秒前
小鱼头发布了新的文献求助10
11秒前
CMUSK发布了新的文献求助10
13秒前
大力怀绿完成签到,获得积分10
13秒前
DT完成签到,获得积分10
15秒前
哼哼哈嘿发布了新的文献求助10
16秒前
DT发布了新的文献求助30
18秒前
香蕉觅云应助一言矣采纳,获得30
18秒前
20秒前
20秒前
22秒前
核桃应助城南花已开采纳,获得10
22秒前
蜗牛不是牛应助小吉利采纳,获得10
23秒前
郑鹏飞发布了新的文献求助10
24秒前
HHHONG发布了新的文献求助10
25秒前
徐徐发布了新的文献求助10
25秒前
27秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 490
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4062995
求助须知:如何正确求助?哪些是违规求助? 3601488
关于积分的说明 11438149
捐赠科研通 3324759
什么是DOI,文献DOI怎么找? 1827775
邀请新用户注册赠送积分活动 898335
科研通“疑难数据库(出版商)”最低求助积分说明 818997