A multi-task deep neural network reveals inflowing river impacts for predictive lake management

任务(项目管理) 人工神经网络 河流管理 网络管理 计算机科学 地质学 人工智能 水资源管理 环境科学 水文学(农业) 环境资源管理 工程类 计算机网络 岩土工程 系统工程
作者
Yan Han,Haoyang Fu,Zhuo Chen,Anran Liao,Mo-Yu Shen,Yi Tao,Yin-Hu Wu,Hong‐Ying Hu
出处
期刊:Environmental science & ecotechnology [Elsevier BV]
卷期号:26: 100592-100592
标识
DOI:10.1016/j.ese.2025.100592
摘要

Lake ecosystems, vital freshwater resources, are increasingly threatened by pollution from riverine inputs, making the management of these loads critical for preventing ecological degradation. Predicting the combined effects of multiple rivers on lake water quality is a significant challenge; traditional mechanistic models are computationally intensive and data-dependent, while conventional machine learning methods often fail to capture the system's multifaceted nature. This complexity creates a critical need for an integrated predictive tool for effective environmental management. Here we show a multi-task deep neural network (MTDNN) that can accurately and simultaneously predict four key water quality indicators-permanganate index, total phosphorus, total nitrogen, and algal density-at multiple locations within a complex lake system using data from its inflowing rivers. Our model, applied to Dianchi Lake in China, improves predictive precision by up to 56.3 % compared to established mechanistic and single-task deep learning models. Furthermore, the model pinpoints the specific contributions of each river and identifies water temperature and wastewater effluent as dominant, site-specific drivers of pollution. Scenario-based forecasting demonstrates that using reclaimed water for lake replenishment is a viable strategy that does not cause deterioration. This MTDNN framework offers a powerful and transferable tool for data-driven lake management, enabling targeted interventions and sustainable water resource protection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
邵诗颖应助昏睡的蟠桃采纳,获得50
刚刚
2秒前
xinggui发布了新的文献求助10
2秒前
4秒前
Qiaoguliang发布了新的文献求助10
4秒前
Anna完成签到 ,获得积分10
5秒前
6秒前
6秒前
7秒前
小鹿发布了新的文献求助10
7秒前
7秒前
HEMIAO发布了新的文献求助10
7秒前
大个应助黄丽采纳,获得10
9秒前
chenjie发布了新的文献求助10
9秒前
10秒前
大宇完成签到,获得积分10
10秒前
乐观无心完成签到,获得积分10
11秒前
领导范儿应助hyx采纳,获得10
11秒前
小二郎应助泠泠琦风采纳,获得10
11秒前
sinohan完成签到,获得积分10
11秒前
hms完成签到 ,获得积分10
11秒前
tutu发布了新的文献求助30
12秒前
FashionBoy应助小鹿采纳,获得10
12秒前
龚幻梦发布了新的文献求助10
13秒前
Ava应助专注的可乐采纳,获得10
15秒前
Vi发布了新的文献求助10
15秒前
桐桐应助武雨寒采纳,获得10
16秒前
16秒前
隐形曼青应助露露采纳,获得10
16秒前
hyx完成签到,获得积分10
21秒前
斯文海菡发布了新的文献求助10
22秒前
板凳完成签到 ,获得积分10
22秒前
23秒前
sfaaeaadefef完成签到,获得积分10
23秒前
CodeCraft应助chenjie采纳,获得10
24秒前
所所应助别凡采纳,获得10
27秒前
麦旋风发布了新的文献求助10
29秒前
29秒前
情怀应助sinohan采纳,获得10
29秒前
小蘑菇应助灿星采纳,获得10
30秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 700
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Ene—X Compounds (X = S, Se, Te, N, P) 300
Cysteine protease ervatamin-B-like-mediated spermatophore digestion and sperm release impair fertility of Plutella xylostella females 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4129050
求助须知:如何正确求助?哪些是违规求助? 3666189
关于积分的说明 11599075
捐赠科研通 3365005
什么是DOI,文献DOI怎么找? 1848958
邀请新用户注册赠送积分活动 912780
科研通“疑难数据库(出版商)”最低求助积分说明 828217