亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A multi-task deep neural network reveals inflowing river impacts for predictive lake management

水质 任务(项目管理) 水资源 人工神经网络 污染 计算机科学 水资源管理 环境科学 水文学(农业) 环境资源管理 工程类 机器学习 生态学 岩土工程 系统工程 生物
作者
Yan Han,Haoyang Fu,Zhuo Chen,Anran Liao,Mo-Yu Shen,Yi Tao,Yin-Hu Wu,Hong‐Ying Hu
出处
期刊:Environmental science & ecotechnology [Elsevier BV]
卷期号:26: 100592-100592
标识
DOI:10.1016/j.ese.2025.100592
摘要

Lake ecosystems, vital freshwater resources, are increasingly threatened by pollution from riverine inputs, making the management of these loads critical for preventing ecological degradation. Predicting the combined effects of multiple rivers on lake water quality is a significant challenge; traditional mechanistic models are computationally intensive and data-dependent, while conventional machine learning methods often fail to capture the system's multifaceted nature. This complexity creates a critical need for an integrated predictive tool for effective environmental management. Here we show a multi-task deep neural network (MTDNN) that can accurately and simultaneously predict four key water quality indicators-permanganate index, total phosphorus, total nitrogen, and algal density-at multiple locations within a complex lake system using data from its inflowing rivers. Our model, applied to Dianchi Lake in China, improves predictive precision by up to 56.3 % compared to established mechanistic and single-task deep learning models. Furthermore, the model pinpoints the specific contributions of each river and identifies water temperature and wastewater effluent as dominant, site-specific drivers of pollution. Scenario-based forecasting demonstrates that using reclaimed water for lake replenishment is a viable strategy that does not cause deterioration. This MTDNN framework offers a powerful and transferable tool for data-driven lake management, enabling targeted interventions and sustainable water resource protection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星河发布了新的文献求助10
9秒前
福斯卡完成签到 ,获得积分10
41秒前
42秒前
khan发布了新的文献求助30
46秒前
46秒前
mengzhe完成签到,获得积分10
47秒前
47秒前
48秒前
48秒前
48秒前
科研通AI5应助星河采纳,获得10
48秒前
48秒前
48秒前
49秒前
49秒前
49秒前
49秒前
49秒前
49秒前
49秒前
50秒前
50秒前
50秒前
50秒前
51秒前
51秒前
51秒前
52秒前
52秒前
52秒前
52秒前
52秒前
53秒前
khan发布了新的文献求助10
54秒前
khan发布了新的文献求助10
54秒前
khan发布了新的文献求助10
54秒前
khan发布了新的文献求助10
54秒前
khan发布了新的文献求助10
54秒前
khan发布了新的文献求助10
54秒前
khan发布了新的文献求助30
55秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5173641
求助须知:如何正确求助?哪些是违规求助? 4363391
关于积分的说明 13585419
捐赠科研通 4211912
什么是DOI,文献DOI怎么找? 2310074
邀请新用户注册赠送积分活动 1309172
关于科研通互助平台的介绍 1256552