材料科学
佩里
有限元法
压力(语言学)
植入
扭矩
复合材料
结构工程
医学
工程类
外科
语言学
热力学
物理
内科学
哲学
作者
Mario Ceddia,Lorenzo Montesani,Luca Comuzzi,Alessandro Cipollina,Douglas Deporter,Natalia Di Pietro,Bartolomeo Trentadue
摘要
Using ultra-short dental implants is a promising alternative to extensive bone grafting procedures for patients with atrophic posterior mandibles and vertical bone loss. However, the amount of insertion torque (IT) applied during implant placement significantly influences stress distribution in the peri-implant bone, which affects implant stability and long-term success. Materials and Methods: This study used finite element analysis (FEA) to examine how different insertion torques (35 N·cm and 75 N·cm) affect stress distribution in cortical and trabecular bone types D2 and D4 surrounding ultra-short implants. Von Mises equivalent stress values were compared with ultimate bone strength thresholds to evaluate the potential for microdamage during insertion. Results: The findings demonstrate that increasing IT from 35 N·cm to 75 N·cm led to a significant increase in peri-implant bone stress. Specifically, cortical bone stress in D4 bone increased from approximately 79 MPa to 142 MPa with higher IT, exceeding physiological limits and elevating the risk of microfractures and bone necrosis. In contrast, lower IT values kept stress within safe limits, ensuring optimal primary stability without damaging the bone. These results underscore the need to strike a balance between achieving sufficient implant stability and avoiding mechanical trauma to the surrounding bone. Conclusions: Accurate control of insertion torque during the placement of ultra-short dental implants is crucial to minimize bone damage and promote optimal osseointegration. Excessive torque, especially in low-density bone, can compromise implant success by inducing excessive stress, thereby increasing the risk of early failure.
科研通智能强力驱动
Strongly Powered by AbleSci AI