GCMSFormer: A Fully Automatic Method for the Resolution of Overlapping Peaks in Gas Chromatography–Mass Spectrometry

质谱法 色谱法 分辨率(逻辑) 气相色谱法 化学 二维气体 数据集 分析化学(期刊) 模式识别(心理学) 计算机科学 人工智能
作者
Zixuan Guo,Yingjie Fan,Chuanxiu Yu,Hongmei Lü,Zhimin Zhang
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:96 (15): 5878-5886 被引量:2
标识
DOI:10.1021/acs.analchem.3c05772
摘要

Gas chromatography–mass spectrometry (GC–MS) is one of the most important instruments for analyzing volatile organic compounds. However, the complexity of real samples and the limitations of chromatographic separation capabilities lead to coeluting compounds without ideal separation. In this study, a Transformer-based automatic resolution method (GCMSFormer) is proposed to resolve mass spectra from GC–MS peaks in an end-to-end manner, predicting the mass spectra of components directly from the raw overlapping peaks data. Furthermore, orthogonal projection resolution (OPR) was integrated into GCMSFormer to resolve minor components. The GCMSFormer model was trained, validated, and tested using 100,000 augmented data. It achieves 99.88% of the bilingual evaluation understudy (BLEU) value on the test set, significantly higher than the 97.68% BLEU value of the baseline sequence-to-sequence model long short-term memory (LSTM). GCMSFormer was also compared with two nondeep learning resolution tools (MZmine and AMDIS) and two deep learning resolution tools (PARAFAC2 with DL and MSHub/GNPS) on a real plant essential oil GC–MS data set. Their resolution results were compared on evaluation metrics, including the number of compounds resolved, mass spectral match score, correlation coefficient, explained variance, and resolution speed. The results demonstrate that GCMSFormer has better resolution performance, higher automation, and faster resolution speed. In summary, GCMSFormer is an end-to-end, fast, fully automatic, and accurate method for analyzing GC–MS data of complex samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
滴滴滴完成签到,获得积分10
刚刚
chen发布了新的文献求助10
2秒前
咕咕嘛完成签到 ,获得积分10
2秒前
滴滴滴发布了新的文献求助10
3秒前
zzz完成签到,获得积分10
3秒前
一路高飛完成签到,获得积分10
4秒前
搜集达人应助麻生采纳,获得10
8秒前
爆米花应助学术蠕虫采纳,获得10
8秒前
10秒前
TAZIA完成签到,获得积分10
11秒前
苏有朋完成签到,获得积分10
13秒前
14秒前
西瓜二郎发布了新的文献求助10
14秒前
15秒前
17秒前
zhk发布了新的文献求助10
19秒前
ShiRz发布了新的文献求助10
19秒前
麻生发布了新的文献求助10
23秒前
25秒前
许愿非树完成签到,获得积分10
28秒前
小小发布了新的文献求助10
32秒前
喜悦寒凝完成签到 ,获得积分10
32秒前
42秒前
46秒前
xzy998发布了新的文献求助50
46秒前
48秒前
向日繁花发布了新的文献求助10
49秒前
49秒前
Rongbid发布了新的文献求助30
49秒前
49秒前
康康XY完成签到 ,获得积分10
49秒前
wqmdd发布了新的文献求助10
51秒前
泡泡发布了新的文献求助10
53秒前
123完成签到,获得积分10
53秒前
54秒前
诗亭发布了新的文献求助10
54秒前
小小完成签到,获得积分10
54秒前
55秒前
58秒前
害羞凤灵发布了新的文献求助10
58秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781269
求助须知:如何正确求助?哪些是违规求助? 3326758
关于积分的说明 10228346
捐赠科研通 3041778
什么是DOI,文献DOI怎么找? 1669591
邀请新用户注册赠送积分活动 799134
科研通“疑难数据库(出版商)”最低求助积分说明 758751