粒度
计算机科学
脑电图
稳健性(进化)
人工智能
机器学习
情绪分类
监督学习
语音识别
模式识别(心理学)
人工神经网络
心理学
操作系统
精神科
生物化学
化学
基因
作者
Xiang Li,Jian Song,Zhigang Zhao,Chunxiao Wang,Dawei Song,Bin Hu
标识
DOI:10.1109/icassp48485.2024.10447740
摘要
This study introduces a novel Supervised Info-enhanced Contrastive Learning framework for EEG based Emotion Recognition (SI-CLEER). SI-CLEER employs multi-granularity contrastive learning to create robust EEG contextual representations, potentially improving emotion recognition effectiveness. Unlike existing methods solely guided by classification loss, we propose a joint learning model combining self-supervised contrastive learning loss and supervised classification loss. This model optimizes both loss functions, capturing subtle EEG signal differences specific to emotion detection. Extensive experiments demonstrate SI-CLEER's robustness and superior accuracy on the SEED dataset compared to state-of-the-art methods. Furthermore, we analyze electrode performance, highlighting the significance of central frontal and temporal brain region EEGs in emotion detection. This study offers an universally applicable approach with potential benefits for diverse EEG classification tasks.
科研通智能强力驱动
Strongly Powered by AbleSci AI