Combined blood Neurofilament light chain and third ventricle width to differentiate Progressive Supranuclear Palsy from Parkinson's Disease: A machine learning study

进行性核上麻痹 帕金森病 医学 疾病 神经科学 心理学 病理
作者
Maria Giovanna Bianco,Costanza Maria Cristiani,Luana Scaramuzzino,Alessia Sarica,Antonio Augimeri,Ilaria Chimento,Jolanda Buonocore,Elvira Immacolata Parrotta,Andrea Quattrone,Giovanni Cuda,Aldo Quattrone
出处
期刊:Parkinsonism & Related Disorders [Elsevier BV]
卷期号:123: 106978-106978 被引量:6
标识
DOI:10.1016/j.parkreldis.2024.106978
摘要

Abstract

Introduction

Differentiating Progressive Supranuclear Palsy (PSP) from Parkinson's Disease (PD) may be clinically challenging. In this study, we explored the performance of machine learning models based on MR imaging and blood molecular biomarkers in distinguishing between these two neurodegenerative diseases.

Methods

Twenty-eight PSP patients, 46 PD patients and 60 control subjects (HC) were consecutively enrolled in the study. Serum concentration of neurofilament light chain protein (Nf-L) was assessed by single molecule array (SIMOA), while an automatic segmentation algorithm was employed for T1-weighted measurements of third ventricle width/intracranial diameter ratio (3rdV/ID). Machine learning (ML) models with Logistic Regression (LR), Random Forest (RF), and XGBoost algorithms based on 3rdV/ID and blood Nf-L levels were tested in distinguishing among PSP, PD and HC.

Results

PSP patients showed higher serum Nf-L levels and larger 3rdV/ID ratio in comparison with both PD and HC groups (p<0.005). All ML algorithms (LR, RF and XGBoost) showed that the combination of MRI and blood biomarkers had excellent classification performances in differentiating PSP from PD (AUC ≥0.92), outperforming each biomarker used alone (AUC: 0.85-0.90). Among the different algorithms, XGBoost was slightly more powerful than LR and RF in distinguishing PSP from PD patients, reaching AUC=0.94 ±0.04.

Conclusion

Our findings highlight the usefulness of combining serum blood and simple linear MRI biomarkers to accurately distinguish between PSP and PD. This multimodal approach may play a pivotal role in patient management and clinical decision-making, paving the way for more effective and timely interventions, in these neurodegenerative diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Danielle完成签到,获得积分10
1秒前
ZSJ完成签到,获得积分10
1秒前
JamesPei应助isfj采纳,获得10
2秒前
jianjiao完成签到,获得积分10
2秒前
拼搏的不评完成签到 ,获得积分10
2秒前
li完成签到,获得积分10
2秒前
科研通AI5应助贺小刚采纳,获得10
4秒前
Heidi完成签到,获得积分10
5秒前
6秒前
7秒前
优雅的怀莲完成签到,获得积分10
8秒前
沉迷文献的脆皮鸡完成签到,获得积分10
8秒前
9秒前
9秒前
科研通AI5应助goldNAN采纳,获得10
11秒前
美海与鱼完成签到,获得积分10
11秒前
scx发布了新的文献求助10
11秒前
12秒前
六叶草完成签到,获得积分10
12秒前
DaSheng发布了新的文献求助10
12秒前
c-zhang完成签到,获得积分20
13秒前
复杂瑛完成签到,获得积分10
13秒前
伶俐千凝发布了新的文献求助10
14秒前
糯米团子完成签到 ,获得积分10
14秒前
xingyun完成签到 ,获得积分10
15秒前
jenningseastera应助未知数采纳,获得10
15秒前
czlianjoy发布了新的文献求助10
17秒前
酷酷李可爱婕完成签到 ,获得积分10
18秒前
zhh完成签到,获得积分10
21秒前
21秒前
21秒前
纪外绣完成签到,获得积分10
23秒前
24秒前
华西招生版完成签到,获得积分10
29秒前
枫也完成签到,获得积分10
29秒前
30秒前
涣醒完成签到,获得积分10
34秒前
harmony完成签到,获得积分10
35秒前
李健应助极品小吃货采纳,获得10
37秒前
seven完成签到 ,获得积分10
37秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782897
求助须知:如何正确求助?哪些是违规求助? 3328185
关于积分的说明 10235295
捐赠科研通 3043240
什么是DOI,文献DOI怎么找? 1670468
邀请新用户注册赠送积分活动 799718
科研通“疑难数据库(出版商)”最低求助积分说明 759033