An Adaptive Domain Adaptation Method for Rolling Bearings’ Fault Diagnosis Fusing Deep Convolution and Self-Attention Networks

人工智能 计算机科学 特征提取 模式识别(心理学) 深度学习 深信不疑网络 断层(地质) 卷积(计算机科学) 人工神经网络 地震学 地质学
作者
Xiao Yu,Youjie Wang,Zhongting Liang,Haidong Shao,Kun Yu,Wanli Yu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-14 被引量:42
标识
DOI:10.1109/tim.2023.3246494
摘要

Intelligent fault diagnosis methods based on deep learning have attracted significant attention in recent years. However, it still faces many challenges, including complex and variable working conditions, noise interference, and insufficient valid data samples. Therefore, a novel deep transfer learning bearing fault diagnosis model is designed in this work by fusing time-frequency analysis, residual network (ResNet) and self-attention mechanism (SAM). A multiscale time-frequency feature map (MTFFM) and global statistical feature matrix (GSFM) of vibration signals are first constructed using wavelet packet transform (WPT). A deep feature extraction network combining ResNet and SAM networks is then designed to realize the fused extraction of local and global time-frequency features. Finally, we construct a joint loss function by the combination of multi-kernel maximum mean discrepancy (MK-MMD) and the domain adversarial neural network (DANN) to optimize the depth feature extraction network, which improves the cross-domain invariance and fault state discrimination of depth features. The proposed optimization method fully exploits the advantages of high-dimensional spatial distribution difference evaluation and gradient inversion adversarial strategy. Its effectiveness is demonstrated through variable working condition transfer fault diagnosis tasks, showing superior performance compared with other intelligent fault diagnosis methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到,获得积分10
1秒前
xiao666完成签到,获得积分10
1秒前
1秒前
椋鸟应助小花采纳,获得10
1秒前
听雪冬眠完成签到,获得积分10
2秒前
2秒前
和谐灵波完成签到 ,获得积分10
2秒前
高挑的萤发布了新的文献求助10
2秒前
科研通AI5应助耳朵先生采纳,获得10
2秒前
西门子云完成签到,获得积分10
3秒前
queen814发布了新的文献求助10
3秒前
晚晚完成签到,获得积分10
3秒前
4秒前
wq发布了新的文献求助10
5秒前
5秒前
Rosaline发布了新的文献求助10
5秒前
悦悦完成签到,获得积分10
5秒前
6秒前
Ava应助火星上访冬采纳,获得10
6秒前
Denmark发布了新的文献求助10
6秒前
负责的爆米花完成签到,获得积分10
7秒前
bai发布了新的文献求助10
8秒前
csr发布了新的文献求助30
8秒前
斯文败类应助屎味烤地瓜采纳,获得10
9秒前
惘然完成签到 ,获得积分10
9秒前
和谐灵波关注了科研通微信公众号
9秒前
呆萌晓兰发布了新的文献求助10
10秒前
Crachin发布了新的文献求助10
10秒前
罗山柳完成签到,获得积分10
10秒前
zhangmbit完成签到,获得积分10
10秒前
11秒前
s010w1ngpixy发布了新的文献求助30
11秒前
含糊的立轩完成签到,获得积分10
11秒前
11秒前
11秒前
科研通AI5应助77采纳,获得10
11秒前
11秒前
13秒前
清爽身影完成签到,获得积分10
13秒前
jj完成签到,获得积分20
13秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804701
求助须知:如何正确求助?哪些是违规求助? 3349568
关于积分的说明 10345175
捐赠科研通 3065662
什么是DOI,文献DOI怎么找? 1683192
邀请新用户注册赠送积分活动 808733
科研通“疑难数据库(出版商)”最低求助积分说明 764723