Segmented Linear Discriminant Analysis for Hyperspectral Image Classification

模式识别(心理学) 线性判别分析 主成分分析 高光谱成像 人工智能 降维 特征提取 计算机科学 子空间拓扑 支持向量机 特征(语言学) 哲学 语言学
作者
Masud Ibn Afjal,Md. Nazrul Islam Mondal,Md. Al Mamun
标识
DOI:10.1109/icece57408.2022.10088677
摘要

Remote sensing Hyperspectral Image (HSI) comprises significant information about the earth's surface which is actually acquired by hundred of narrow and adjacent spectral bands. The intended performance of classification accuracy does not attain due to the volume of the original HSI dataset and the enormous quantity of spectral bands. As such, dimensionality reduction approaches using feature extraction and selection are typically adopted to enhance classification performance. The unsupervised Principal Component Analysis (PCA), as well as the supervised Linear Discriminant Analysis (LDA), are commonly used as linear feature extraction methods for feature subspace detection. However, due to considering the effects of global variation, both PCA and LDA fail to extract local characteristics of HSI. In this paper, we propose a segmented LDA-based (SLDA) feature extraction where we apply the LDA in a segmented way to extract better local characteristics as well as global characteristics from the HSI. Per-pixel classification using a Support Vector Machine (SVM) is applied to our proposed SLDA method, PCA, Segmented-PCA (SPCA), and LDA on the Indian Pines agricultural HSI dataset. The experimental results show that the overall classification performance of SLDA (90.60%) remarkably outperforms all the other investigated methods: PCA (85.55%), SPCA (86.96%), LDA (86.45%), and the complete original dataset without employing any feature reduction method (83.10%). The proposed SLDA also requires the least amount of space complexity in different implementation scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Yana发布了新的文献求助10
1秒前
Minions完成签到 ,获得积分10
1秒前
果果发布了新的文献求助10
3秒前
3秒前
ShuY发布了新的文献求助10
3秒前
4秒前
YY完成签到,获得积分10
4秒前
Orange应助皮皮采纳,获得10
5秒前
悬溺发布了新的文献求助10
6秒前
爱雨霁发布了新的文献求助10
6秒前
7秒前
旷野发布了新的文献求助10
8秒前
8秒前
9秒前
Oliver发布了新的文献求助30
9秒前
123444发布了新的文献求助10
9秒前
科研通AI5应助鱼蛋采纳,获得10
9秒前
10秒前
biolong545完成签到,获得积分10
10秒前
12秒前
嫩嫩发布了新的文献求助10
12秒前
852应助123444采纳,获得30
12秒前
爱雨霁完成签到,获得积分10
13秒前
依染410完成签到,获得积分20
14秒前
14秒前
陈雷应助Oliver采纳,获得10
15秒前
15秒前
16秒前
大个应助米兰的小铁匠采纳,获得10
17秒前
皮皮发布了新的文献求助10
18秒前
18秒前
筱小筱发布了新的文献求助10
19秒前
19秒前
小钱全发布了新的文献求助10
22秒前
隐形曼青应助魔幻的觅云采纳,获得10
22秒前
22秒前
Jasper应助Oliver采纳,获得10
22秒前
灰灰喵发布了新的文献求助10
22秒前
Sylvia发布了新的文献求助10
22秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797449
求助须知:如何正确求助?哪些是违规求助? 3342822
关于积分的说明 10313428
捐赠科研通 3059557
什么是DOI,文献DOI怎么找? 1678921
邀请新用户注册赠送积分活动 806281
科研通“疑难数据库(出版商)”最低求助积分说明 763043